Недавно мы рассматривали тонкости проектирования схем данных в Greenplum. Продолжая разбирать важные для обучения дата-инженеров и архитекторов DWH темы, сегодня поговорим о том, как разделение и распределение данных влияют на скорость выполнения SQL-запросов в этой MPP-СУБД. Распределение данных Напомним, MPP-СУБД Greenplum широко используется в качестве OLAP-системы и корпоративного хранилища данных....
Все архитекторы DWH и многие дата-инженеры знакомы с идеями Ральфа Кимбалла, согласно которым хранилище данных — это сочетание множества различных витрин данных, облегчающих отчетность и анализ важных бизнес-показателей. Читайте далее, как реализовать этот подход при проектировании корпоративного хранилища данных и при чем здесь Data Mesh. КХД по Кимбаллу: доменные витрины...
В этой статье продолжим говорить про лучшие практики работы с Greenplum и рассмотрим тонкости проектирования схем данных в этой MPP-СУБД, которая часто применяется для хранения и аналитики больших данных. Почему надо задавать одинаковые типы данных для столбцов, используемых в SQL-запросах c оператором JOIN, чем хранилище кучи отличается от Append Only,...
Чтобы добавить в наши курсы для ИТ-архитекторов и дата-инженеров еще больше полезных материалов, сегодня рассмотрим, как модернизировать аналитические рабочие нагрузки в транзакционных системах с помощью гибридной архитектуры Data Mesh. А также поговорим о том, как реализовать этот подход с организационной и технической точек зрения. Аналитика и транзакции: versus или вместе?...
Сегодня разберем тему, важную для обучения дата-инженеров и разработчиков распределенных Spark-приложений. Почему чтение данных из реляционных баз в Apache Spark может быть медленным и как его ускорить, изменив SQL-запрос или структуру таблицы. JDBC-источники данных для Apache Spark Apache Spark является средством обработки, а не хранения больших данных. Поэтому, чтобы использовать...
Data Mesh воплощает децентрализованный подход к построению распределенной архитектуры данных. При всех достоинствах этой модели, которая совмещает потоковую и пакетную парадигмы обработки данных, она еще довольно незрелая и имеет ряд недостатков. Одним из них является проблема с информационной безопасностью, что мы и рассмотрим далее для обучения ИТ-архитекторов и дата-инженеров. Безопасность...
Для практического обучения дата-инженеров и архитекторов Big Data систем сегодня рассмотрим трудности изоляции и распределения в кластере Apache HBase и способы их обхода. С какими проблемами изоляции и сбалансированного распространения данных столкнулись инженеры индийской e-commerce компании Flipkart при организации мультиарендного кластера Apache HBase и как их решили. Изоляция данных и...
В связи с активным переходом от локальной ИТ-инфраструктуры в облачные полностью управляемые сервисы многие ИТ-архитекторы и дата-инженеры задумываются о замене собственного кластера Apache Kafka ее Cloud-альтернативами. Читайте, что общего у Apache Kafka с AWS Kinesis, чем они отличаются и какую платформу выбрать для потоковой передачи событий. Потоковая обработка событий с...
Сегодня заглянем под капот ИТ-инфраструктуры самой знаменитой франшизы быстрого питания. Как устроена унифицированная платформа потоковой обработки событий в McDonald’s на базе облачного полностью управляемого сервиса Apache Kafka в AWS и что гарантирует высокую доступность и надежность решения. Архитектурный дизайн Архитектуры, основанные на событиях, обеспечивают гибкость интеграции, масштабируемость и некоторые возможности...
Сегодня рассмотрим пример построения гибридной архитектуры LakeHouse c Apache Kafka и Snowflake, которая гарантирует высокую масштабируемость и обеспечивает безопасность данных от несанкционированного доступа с помощью маскирования. От пакетного озера данных на AWS S3 к потоковому LakeHouse Будучи высоконадежной распределенной платформой потоковой передачи событий, Apache Kafka часто используется для обработки потока...