Движки таблиц в ClickHouse: что и когда выбирать

Одной из причин быстрой работы ClickHouse являются движки таблиц, оптимизированные на конкретные операции с данными. Сегодня рассмотрим, чем они отличаются и какой из них выбирать для разных сценариев. Движки БД ClickHouse Прежде чем разбираться с движками таблиц ClickHouse, вспомним само назначение этого термина. Движок БД или механизм хранения отвечает за...

3 вида представлений в ClickHouse

Чем материализованное представление в ClickHouse отличается от обычного, зачем нужны LIVE-представления и как их использовать. Примеры SQL-запросов с VIEW для самой популярной колоночной аналитической СУБД. Представления vs словари в ClickHouse Поскольку ClickHouse, как типовая колоночная СУБД, используется для аналитической обработки огромных объемов данных в реальном времени, вопрос ускорения вычислений для...

Анализ временных рядов в ClickHouse и Greenplum

Анализ временных рядов нужен не только в Data Science, но и в мониторинге системных событий. Чем столбец с отметками времени в ClickHouse отличается от гипертаблиц в PostgreSQL и Greenplum c расширением TimescaleDB, и что выбирать для аналитики больших данных. ClickHouse для анализа временных рядов ClickHouse является колоночной СУБД для аналитической...

Словари в ClickHouse

Что такое словарь в ClickHouse, какие бывают словари, как их создать и каким командами к ним обращаться. Пара примеров со словарями в самой популярной колоночной аналитической СУБД. Что такое словарь в ClickHouse Как колоночная база данных, ClickHouse предназначена для аналитической обработки огромных объемов данных в реальном времени. Аналитические сценарии предполагают...

SQL-запросы к Clickhouse в онлайн-песочнице: практический пример

Насколько быстро ClickHouse выполняет SQL-запросы: тестирование СУБД в открытой онлайн-песочнице. Примеры запросов и время их выполнения. Работа с онлайн-песочницей Clickhouse: выполнение SQL-запросов Будучи реляционной аналитической СУБД, ClickHouse позволяет обрабатывать гигабайты данных в реальном времени. Архитектурные особенности, благодаря которым реализуется такая скорость, мы недавно разбирали здесь. Чтобы оценить это на практике,...

Greenplum vs Clickhouse: сравнение аналитических СУБД для Big Data

Сходства и различия популярных реляционных аналитических СУБД с открытым исходным кодом: что общего у Greenplum с ClickHouse, чем они отличаются, что и когда выбирать. Greenplum и Clickhouse: обзор возможностей для аналитики больших данных Обе СУБД являются реляционными и относятся к классу OLAP-систем, т.е. ориентированы на аналитические варианты использования, т.е. чтение...

Вместо Tableau и Power BI: DataLens от Яндекса на примере внедрения в KazanExpress

Недавно мы писали про Yandex Managed Service for Apache Kafka. Продолжая тему импортозамещения, сегодня рассмотрим, как этот и другие полностью управляемые сервисы Яндекса помогли отечественному маркетплейсу KazanExpress построить эффективное BI-решение. Что такое Yandex DataLens и как он способен заменить зарубежные системы бизнес-аналитики типа Tableau с Power BI, а также открытый Apache...

Аналитика больших данных в реальном времени с Apache Kafka, Spark, ClickHouse и S3

Практический пример аналитики больших данных в реальном времени с Apache Spark, Kafka, ClickHouse и AWS S3: возможности, архитектура, также специально для дата-инженеров и разработчиков распределенных приложений рассмотрим, сколько времени нужно для разрешения каждого вызова API в определенном временном диапазоне. Анализ событий пользовательского поведения в реальном времени Основным продуктом международной ИТ-компании...

Платформа аналитики больших данных Леруа Мерлен: потоковый CDC с Apache Kafka, NiFi, AirFlow и Flink в DWH на Greenplum

Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...

Тонкости интеграции Apache Kafka с Pinot для аналитики больших данных в реальном времени

Продолжая вчерашний разговор про потоковую аналитику больших данных на Apache Kafka и Pinot, сегодня рассмотрим особенности интеграции этих систем. Читайте далее, как входные данные Kafka разделяются, реплицируются и индексируются в Pinot, каким образом выполняется обработка данных через распределенные SQL-запросы. Также разберем, почему управление памятью серверов Pinot, потребляющих данные из Kafka,...

Поиск по сайту