Не только векторные БД: графовый RAG для LLM и агентского ИИ

Что не так с векторным RAG: обогащение LLM данными из графовых баз с помощью MCP-протокола, вычислительных движков и коннекторов для построения ML-системы агентского ИИ. Что такое графовый RAG для LLM и ИИ-агентов Большие языковые модели (LLM, Large Language Model) и основанные на них системы агентского ИИ активно используют векторные базы...

От LLM до ИИ-агентов: эволюция чат-ботов и шаблоны рабочих процессов

Как развивались системы агентского ИИ, из каких компонентов они состоят, каковы их типовые архитектуры и чем отличаются друг от друга топологии построения рабочих процессов LLM. История развития систем агентского ИИ Развитие и практическое внедрение больших языковых моделей (LLM, Large Language Model) привело к появлению систем агентского ИИ, где LLM динамически...

Проблема изоляции ИИ-агентов и ее решение с помощью потоковой передачи

Как связать ИИ-агентов: событийно-ориентированная архитектура и потоковая передача событий для интеграции доменных LLM в мультиагентную систему. Зачем нужна интеграция ИИ-агентов О проблеме изоляции и рассинхронизации данных в корпоративных хранилищах мы уже писали здесь. Похожая ситуация наблюдается и при внедрении систем агентского ИИ, где большие языковые модели (LLM, Large Language Model)...

ИИ-агенты на Apache Kafka и MCP-серверы: организация потокового обогащения LLM

Почему MCP-серверы с технологиями потоковой передачи событий в LLM стали трендом: примеры обогащения ИИ-агентов контекстом из Kafka. Внедрение MCP в Confluent Cloud для взаимодействия с Apache Kafka Хотя MCP-протокол, позволяющий ML-модели новыми контекстными данными, что необходимо для больших языковых моделей (LLM, Large Language Model), довольно прост с технической точки зрения,...

Как подключить LLM к контексту: модель контекстного протокола MCP

Как улучшить интеграцию LLM в бизнес-процессы и информационные системы через стандартизированную передачу контекстной информации: текстовый MCP-протокол для LLM. Что контекстный протокол модели и почему он важен для LLM Одно из ключевых отличий популярных ИИ-инструментов, больших языковых моделей (LLM, Large Language Model) – это их способность генерировать ответы с учетом контекста....

AI SDK для Apache AirFlow: оркестрация LLM-задач

Как LLM упрощают работу дата-инженера: новые декораторы TaskFlow API в Apache Airflow для внедрения больших языковых моделей в DAG. Обзор Airflow AI SDK на основе Pydantic AI с практическим примером про анализ отзывов. ИИ в инженерии данных Мультимодальность современных инструментов машинного обучения, когда одна ML-модель может принимать на вход данные...

Почему колоночные форматы Parquet и ORC не подходят для ML-нагрузок

Чем ML-сценарии работы с данными отличаются от типовых аналитических нагрузок и почему колоночные форматы не справляются с ними: сложности Parquet и ORC в хранении данных для машинного обучения. Почему колоночные форматы не справляются со всеми ML-сценариями Хотя колоночный формат хранения данных хорошо подходит для многих современных сценариев, таких как машинное...

ТОП-5 проблем агентского ИИ и как их преодолеть

Чем хорош агентский ИИ, какие риски и проблемы с ним связаны, и как их избежать: технические и организационные меры внедрения ML-систем в реальный бизнес. Что сдерживает внедрение агентского ИИ Мы уже писали об агентском ИИ, когда ML-система не просто реагирует на запросы пользователя, а работает автономно, интеллектуально решая задачи без...

Потоковая обработка данных и EDA-архитектура для LLM-систем

Почему генеративный ИИ основан на потоковой обработке данных и EDA-архитектуре, для чего оценивать качество LLM-модели и как построить такую систему мониторинга: подходы и технологии. О важности потоковой обработки данных и EDA-архитектуры для LLM-систем Все больше современных бизнес-приложений включают в себя большие языковые модели (LLM, Large Language Model), чтобы автоматизировать поддержку...

Разработка унифицированных конвейеров обработки данных с Apache Beam

Что такое Apache Beam, зачем он нужен, чем полезен дата-инженеру и как его использовать: архитектура, принципы работы и примеры построения пакетных и потоковых конвейеров обработки данных. Что такое Apache Beam и зачем он нужен Хотя выбор технологического стека – один из важнейших вопросов архитектурного проектирования, иногда требуется универсальное решение построения...