Apache Spark + AirFlow – известная каждому дата-инженеру комбинация технологий Big Data для запуска сложных конвейеров обработки данных. Но совместное использование этих фреймворков ограничено недостатками AirFlow, часть из которых можно обойти с помощью Apache Livy. Однако эксплуатация AirFlow менее удобна, чем Dagster. Поэтому сегодня рассмотрим, как этот альтернативный оркестратор данных...
Apache AirFlow – это не только инструмент планирования batch-процессов, но и средство мониторинга ETL-задач и конвейеров обработки данных. Однако, наблюдать за выполнением data pipeline’а в веб-интерфейсе этого фреймворка не всегда удобно. Читайте далее, с какими проблемами AirFlow сталкиваются дата-инженеры и как альтернативный оркестратор Dagster позволяет решить их. Проблемы мониторинга data...
Продолжая сравнивать Apache AirFlow с Dagster, сегодня рассмотрим особенности развертывания и эксплуатации этих оркестраторов ETL-процессов и конвейеров обработки данных. Читайте далее о плюсах изоляции процессов, отделения системных служб от пользовательского кода, сложностях планирования и запуска задач, а также способах их решения с помощью современных инструментов дата-инженера. В изолятор: как развернуть...
Apache AirFlow – один из самых популярных инструментов современного дата-инженера для планирования и оркестрации batch-процессов. Повторить успех этого фреймворка стремятся многие компании и Big Data энтузиасты: недавно мы рассказывали про ViewFlow от DataCamp, а также писали про Luigi, Argo, MLFlow и KubeFlow. Сегодня рассмотрим Dagster – еще одну альтернативу Apache...