Зачем нужен каталог метаданных и как он работает: построение платформы данных и управление метаданными по DAMA DMBOK. Unity Catalog и другие решения для учета источников данных и непрерывного обеспечения их актуальности. Управление метаданными по DMBOK Методологически создание и внедрение платформ данных основано на положениях DAMA DMBOK – своде знаний по...
Что общего у StarRocks с Trino, чем они отличаются, когда и что выбирать для практического использования: сравниваем движки для быстрой аналитики больших данных из Data Lake. Чем похожи StarRocks и Trino Вчера мы разбирали, что такое StarRocks, как устроена и где пригодится эта высокопроизводительная аналитическая база данных с открытым исходным...
Вместо Trino и ClickHouse: что такое StarRocks и как оно устроено, архитектура и принципы работы, сценарии использования и место в корпоративной архитектуре данных. Архитектура и принципы работы StarRocks Хотя ClickHouse сегодня считается одним из наиболее популярных колоночных хранилищ для аналитики больших объемов данных в реальном времени, это не единственный представитель...
Как сократить затраты на хранение исторических данных в ClickHouse для ИИ-сценариев, сохранив высокую скорость аналитики по широким таблицам и озеру данных: эволюция колоночной СУБД в новом проекте с исходным кодом Antalya от Altinity. Проблемы совмещения ClickHouse с озерами данных и способы их решения Благодаря колоночной структуре хранения данных ClickHouse не...
Можно ли сочетать OLAP и OLTP-нагрузки в едином хранилище и как это сделать: гибридная транзакционно-аналитическая обработка в базах данных, возможности и проблемы этой архитектуры. Что такое HTAP Исторически хранилища данных принято делить на OLAP и OLTP с учетом их оптимизации для аналитических и транзакционных нагрузок. OLTP-системы (Online Transaction Processing) оптимизированы...
Почему в одной организации возникает рассогласование данных, чем опасна такая рассинхронизация, как ее обнаружить и устранить: подходы и решения для повышения качества данных. Что такое data silos и как найти локальные «болота данных» Рассогласование в данных возникает при разной логике обработки одной и той же информации. Это мешает принимать объективные...
Почему ClickHouse подходит для архитектуры данных Medallion и как реализовать это слоистое хранилище средствами колоночной СУБД без сторонних инструментов: лучшие практики и примеры использования. 3 слоя архитектуры данных Medallion Слоистая архитектура, предложенная компанией Databricks, сегодня считается классикой для построения озер и хранилищ данных. Она предполагает реализацию 3-х уровней (слоев): Бронза,...
Что не так с классическими ETL/ELT-конвейерами транзакционных и аналитических систем в гибридное хранилище LakeHouse, и как дата-инженеры платформы Confluent хотят решить эти проблемы с помощью Tableflow, передавая события из Kafka в таблицы Iceberg. Очередная попытка унификации пакетной и потоковой парадигмы Чтобы обеспечивать потребности современного бизнеса в пакетной и потоковой аналитике,...
Архитектура Data Lake: что не так с потоковыми обновлениями данных в Data Lake, как Apache Iceberg реализует эти операции и почему Upsolver решили улучшить этот формат Проблема потоковых обновлений в Data Lake и 2 подхода к ее решению Считается, что озеро данных (Data Lake) предлагают доступное и гибкое хранилище, позволяющее...
Большинство ETL-конвейеров извлекают данные из реляционных баз в пакетном или микропакетном режиме. Читайте далее, по каким шаблонам реализовать операции извлечения. Моментальные снимки: периодическая выгрузка данных из исходных таблиц Полная периодическая выгрузка данных из одной или нескольких таблиц – это, пожалуй, самый простой метод извлечения изменяемых данных. По своей сути результат полной...