Сегодня в рамках обучения дата-инженеров разберем, как организовать логическое ветвление рабочего процесса в Apache AirFlow с помощью операторов. Какие операторы позволяют организовать условную логику в DAG, чем BranchPythonOperator отличается от ShortCircuitOperator, как запустить задачу в зависимости от времени и/или дня недели, а также результата выполнения SQL-запроса. Условная логика в DAG:...
Интеграция Apache Airflow с инструментами CI/CD является одной из лучших практик современной дата-инженерии, о чем мы недавно писали. Читайте далее, зачем нужно управлять кодом DAG с помощью популярных систем управления версиями и как это сделать на примере GitLab CI/CD. Сложности управления DAG в разных средах AirFlow Apache Airflow считается наиболее...
Поскольку наши курсы по Apache Spark предполагают практическое обучение с глубоким погружением в особенности разработки и настройки распределенных приложений, сегодня рассмотрим, как именно выполняются кластерные вычисления в рамках этого Big Data фреймворка. Читайте далее, из чего состоит архитектура Spark-приложения, как связаны SparkContext и SparkConf, а также зачем ограничивать размер драйвера...
В поддержку наших полностью обновленных авторских курсов для инженеров данных по Apache AirFlow, сегодня рассмотрим новые способы определения DAG, которые были добавлены в релизе 2.0. Читайте далее, что под капотом TaskFlow API, как поместить задачи в TaskGroup, чем dag_policy отличается от task_policy и почему все это упрощает работу инженера Big...
В этой статье я бы хотел рассказать об основных концепциях Airflow и как с ним работать. Что такое Airflow? Airflow – это open-source оркестратор для управления процессами загрузки и обработки данных. Если у вас есть большое количество задач, запускаемых на cron, особенно, если между ними есть зависимости, то Airflow может...
Планируем рабочие процессы вместе с Apache Airflow Почему Apache Airflow? Большинство процессов обработки данных строятся на определении набора «задач» для извлечения, анализа, преобразования, загрузки и хранения данных. Например, последовательность обработки данных может состоять из таких задач, как чтение логов из S3, создание задания Spark для извлечения соответствующих объектов, индексирование объектов...