Несогласованность в хранилищах и озерах данных: найти и обезвредить

Почему в одной организации возникает рассогласование данных, чем опасна такая рассинхронизация, как ее обнаружить и устранить: подходы и решения для повышения качества данных. Что такое data silos и как найти локальные «болота данных» Рассогласование в данных возникает при разной логике обработки одной и той же информации. Это мешает принимать объективные...

ClickHouse vs Apache Doris: что выбрать для хранилища данных

Что такое Apache Doris, как его использовать для построения хранилища данных и чем это отличается от ClickHouse. Сценарии применения и критерии выбора основы DWH. Что такое Apache Doris Недавно мы рассматривали, почему ClickHouse подходит для реализации хранилища данных на основе эталонной архитектуры Medallion благодаря поддержке более 70 форматов файлов, материализованным...

Реализация архитектуры Medallion в ClickHouse

Почему ClickHouse подходит для архитектуры данных Medallion и как реализовать это слоистое хранилище средствами колоночной СУБД без сторонних инструментов: лучшие практики и примеры использования. 3 слоя архитектуры данных Medallion Слоистая архитектура, предложенная компанией Databricks, сегодня считается классикой для построения озер и хранилищ данных. Она предполагает реализацию 3-х уровней (слоев): Бронза,...

Trino vs dbt: что и когда использовать

Что общего между Trino и dbt, чем они отличаются и в каких случаях выбирать тот или иной инструмент для инженерии и анализа данных. Краткий ликбез для начинающего дата-инженера и аналитика. Сходства и отличия Trino и dbt Trino и dbt (Data Build Tool) — это два популярных инструмента с открытым исходным...

Как наполнить Data LakeHouse данными из Apache Kafka с помощью Tableflow

Что не так с классическими ETL/ELT-конвейерами транзакционных и аналитических систем в гибридное хранилище LakeHouse, и как дата-инженеры платформы Confluent хотят решить эти проблемы с помощью Tableflow, передавая события из Kafka в таблицы Iceberg. Очередная попытка унификации пакетной и потоковой парадигмы Чтобы обеспечивать потребности современного бизнеса в пакетной и потоковой аналитике,...

Проектирование raw-слоя DWH для последующего преобразования в Data Vault

Как определить структуру Raw-слоя корпоративного хранилища данных: пример проектирования и DDL-скрипт для кейса электронной коммерции, выбор компонентов решения для архитектуры данных. Постановка задачи: анализ систем-источников Сегодня корпоративные хранилища данных (DWH, Data Warehouse) обычно реализуются в виде нескольких баз данных, связанных ETL-процессами. Причем каждая из этих гомогенных или гетерогенных, т.е. на...

5 шагов проектирования DWH с подходом Data Vault: практический пример

Как построить хранилище данных с подходом Data Vault: пример проектирования схемы данных и разработка DDL-скрипта для Transformed-слоя DWH интернет-магазина. Слоистая структура DWH и подход Data Vault Корпоративное хранилище данных (DWH, Data Warehouse) часто бывает гетерогенным, т.к. организованным с помощью нескольких баз данных, связанных ETL-процессами. Согласно концепции слоистой архитектуры (LSA, Layered...

Состояние гонки в ETL-конвейерах: как дата-инженеру избежать коллизий данных

Что такое гонка данных, почему она опасна в ETL-заданиях и как ее избежать: зачем разделять задания репликации в RAW-слой хранилища от их преобразования и сохранения в Transformed-слое DWH перед созданием витрин данных для BI-приложений. Что такое гонка данных в дата-инженерии Одна из главных особенностей распределенных систем – это задержка между...

Как извлечь данные из реляционной базы: основные паттерны

Большинство ETL-конвейеров извлекают данные из реляционных баз в пакетном или микропакетном режиме. Читайте далее, по каким шаблонам реализовать операции извлечения. Моментальные снимки: периодическая выгрузка данных из исходных таблиц Полная периодическая выгрузка данных из одной или нескольких таблиц – это, пожалуй, самый простой метод извлечения изменяемых данных. По своей сути результат полной...

Еще одна архитектура данных: Streamhouse с Apache Paimon

Что не так с архитектурой данных Lakehouse, зачем разработчики Apache Flink создали на основе табличного хранилища новую дата-платформу, чем хорош подход Streamhouse и как устроен Apache Paimon. Что такое архитектура данных Streamhouse Не успели дата-архитекторы освоиться с Lakehouse – архитектурой данных, которая объединяет преимущества хранилищ и озер данных, комбинируя масштабируемость...