StarRocks vs Trino: что и когда выбирать

Что общего у StarRocks с Trino, чем они отличаются, когда и что выбирать для практического использования: сравниваем движки для быстрой аналитики больших данных из Data Lake. Чем похожи StarRocks и Trino Вчера мы разбирали, что такое StarRocks, как устроена и где пригодится эта высокопроизводительная аналитическая база данных с открытым исходным...

Не только Clickhouse: StarRocks для аналитики больших данных в реальном времени

Вместо Trino и ClickHouse: что такое StarRocks и как оно устроено, архитектура и принципы работы, сценарии использования и место в корпоративной архитектуре данных. Архитектура и принципы работы StarRocks Хотя ClickHouse сегодня считается одним из наиболее популярных колоночных хранилищ для аналитики больших объемов данных в реальном времени, это не единственный представитель...

Apache Wayang и Trino: versus или вместе

Что такое Apache Wayang, чем он похож на Beam и в чем разница с Trino: архитектура и принципы работы еще одного распределенного фреймворка интеграции данных. Что такое Apache Wayang и чем это отличается от Trino Trino – это мощный, но далеко не единственный инструмент распределенного выполнения аналитических запросов, способный обрабатывать...

Открытый митап «Исполнение запросов: Trino и Spark»

В поддержку нашего нового курса для дата-инженеров Школа Больших Данных проводит очередной бесплатный митап для аналитиков, архитекторов, инженеров данных, разработчиков, DataOps- инженеров и тех, кто интересуется современными технологиями обработки данных. Trino – это распределенный SQL-движок с массово-параллельной архитектурой и открытым исходным кодом. Он предназначен для работы с большими объемами данных в...

Как создать собственный плагин Trino: практический пример

Пишем собственный плагин Trino для работы с пользовательским типом данных: практический пример создания и регистрации своих классов и pom-файла. Пример реализации своего плагина Trino О том, что гибкость Trino обеспечивается благодаря его плагинной архитектуре, я недавно писала здесь. Сегодня рассмотрим пример создания своего плагина, который реализует возможность работы с пользовательским...

Как расширить возможности Trino с помощью плагинов

Почему Trino такой гибкий: плагинная архитектура SQL-движка, зависимости SPI-интерфейса и последовательность создания пользовательского плагина. Плагинная архитектура Trino и как она работает Благодаря настраиваемым коннекторам Trino может подключаться к любым источникам, от реляционных баз данных до NoSQL-хранилищ. При этом коннекторы – это частный случай плагина. С точки зрения проектирования ПО,  Trino...

Проблемы бесконечного масштабирования кластера и их решение с Trino Gateway

Что такое Trino Gateway, зачем он нужен и как работает: для чего делить один большой кластер Trino на несколько маленьких и как к ним обращаться без изменений на стороне клиентов. Проблемы бесконечного масштабирования кластера Благодаря горизонтальному масштабированию, о котором мы говорили вчера, кластер Trino можно расширять, добавляя новые рабочие узлы....

Масштабирование Trino

Как ускорить работу Trino при росте нагрузки и сэкономить на кластере при ее сокращении: автомасштабирование рабочих узлов и операций записи, а также настройка групп ресурсов. Масштабирование кластера Классическим способом справиться с растущими вычислительными нагрузками в гомогенной распределенной системе является горизонтальное масштабирование кластера. Это сводится к добавлению новых узлов, которые отвечают...

Отказ от Hive-коннектора и другие обновления в Trino 470

Мы уже писали о том, как Trino работает с удаленными объектными хранилищами и файловыми системами. Сегодня поговорим о том, какие изменения выпущены в февральском релизе 2025 года, почему в Trino удалена поддержка доступа к Azure Storage, Google Cloud Storage, S3 и S3-совместимым файловым системам через Hive и что использовать вместо...

Место Trino в архитектуре данных

Почему Trino не заменит Flink, Spark и Airflow: границы применимости MPP-движка распределенного выполнения SQL-запросов к реляционным и нереляционным источникам данных. Почему Trino не заменит Flink, Spark и Airflow Хотя Trino отлично подходит для быстрой ad-hoc аналитики, позволяя SQL-запросами в реальном времени обращаться к различным базам данных, включая нереляционные хранилища и...