Не только векторные БД: графовый RAG для LLM и агентского ИИ

Что не так с векторным RAG: обогащение LLM данными из графовых баз с помощью MCP-протокола, вычислительных движков и коннекторов для построения ML-системы агентского ИИ. Что такое графовый RAG для LLM и ИИ-агентов Большие языковые модели (LLM, Large Language Model) и основанные на них системы агентского ИИ активно используют векторные базы...

Проблема изоляции ИИ-агентов и ее решение с помощью потоковой передачи

Как связать ИИ-агентов: событийно-ориентированная архитектура и потоковая передача событий для интеграции доменных LLM в мультиагентную систему. Зачем нужна интеграция ИИ-агентов О проблеме изоляции и рассинхронизации данных в корпоративных хранилищах мы уже писали здесь. Похожая ситуация наблюдается и при внедрении систем агентского ИИ, где большие языковые модели (LLM, Large Language Model)...

ИИ-агенты на Apache Kafka и MCP-серверы: организация потокового обогащения LLM

Почему MCP-серверы с технологиями потоковой передачи событий в LLM стали трендом: примеры обогащения ИИ-агентов контекстом из Kafka. Внедрение MCP в Confluent Cloud для взаимодействия с Apache Kafka Хотя MCP-протокол, позволяющий ML-модели новыми контекстными данными, что необходимо для больших языковых моделей (LLM, Large Language Model), довольно прост с технической точки зрения,...

Как подключить LLM к контексту: модель контекстного протокола MCP

Как улучшить интеграцию LLM в бизнес-процессы и информационные системы через стандартизированную передачу контекстной информации: текстовый MCP-протокол для LLM. Что контекстный протокол модели и почему он важен для LLM Одно из ключевых отличий популярных ИИ-инструментов, больших языковых моделей (LLM, Large Language Model) – это их способность генерировать ответы с учетом контекста....

Почему колоночные форматы Parquet и ORC не подходят для ML-нагрузок

Чем ML-сценарии работы с данными отличаются от типовых аналитических нагрузок и почему колоночные форматы не справляются с ними: сложности Parquet и ORC в хранении данных для машинного обучения. Почему колоночные форматы не справляются со всеми ML-сценариями Хотя колоночный формат хранения данных хорошо подходит для многих современных сценариев, таких как машинное...

ТОП-5 проблем агентского ИИ и как их преодолеть

Чем хорош агентский ИИ, какие риски и проблемы с ним связаны, и как их избежать: технические и организационные меры внедрения ML-систем в реальный бизнес. Что сдерживает внедрение агентского ИИ Мы уже писали об агентском ИИ, когда ML-система не просто реагирует на запросы пользователя, а работает автономно, интеллектуально решая задачи без...

Потоковая обработка данных и EDA-архитектура для LLM-систем

Почему генеративный ИИ основан на потоковой обработке данных и EDA-архитектуре, для чего оценивать качество LLM-модели и как построить такую систему мониторинга: подходы и технологии. О важности потоковой обработки данных и EDA-архитектуры для LLM-систем Все больше современных бизнес-приложений включают в себя большие языковые модели (LLM, Large Language Model), чтобы автоматизировать поддержку...

5 причин использовать Clickhouse для ML-задач

Что такое хранилище признаков, зачем это нужно в машинном обучении, каковы его главные компоненты и как использовать ClickHouse в качестве Feature Store для ML-задач. Хранилище признаков для машинного обучения: архитектура и принципы работы Feature Store Будучи колоночной базой данных, ClickHouse отлично подходит на роль хранилища фичей (Feature Store) для задач...

Кибербезопасность в MLOps: угрозы и лучшие практики

Почему безопасность ML-систем становится все более важным вопросом и как ее обеспечить: MLOps-подходы, практики и технологии защиты данных, моделей машинного обучения, а также вычислительных и инфраструктурных конвейеров. Защита данных для машинного обучения В связи с активным внедрением система машинного обучения в производственное использование, вопрос безопасности становится все более актуальным. ML-системы...

Что такое LLMOps или MLOps для больших языковых моделей

Зачем управлять трансферным обучением больших языковых моделей и что входит в это управление: знакомимся с расширением MLOps для LLM под названием LLMOps. Что такое LLMOps Большие языковые модели, воплощенные в генеративных нейросетях (ChatGPT и прочие аналоги), стали главной технологией уходящего года, которая уже активно используется на практике как частными лицами,...

MLOps с Tecton и Apache AirFlow

Что представляет собой MLOps-платформа Tecton и как запустить на ней конвейеры машинного обучения, используя провайдер Tecton-AirFlow, чтобы управлять ресурсами Tecton в этом ETL-оркестраторе. Что такое Tecton и при чем здесь MLOps Поскольку концепция MLOps направлена на безбарьерную автоматизацию всех этапов жизненного цикла систем машинного обучения, для этого нужны специализированные средства....

Автоматизированное тестирование в MLOps: что и как проверять?

Мы уже писали про особенности тестирования систем машинного обучения. Чтобы не повторяться, сегодня рассмотрим фреймворки для реализации идей MLOps, а также рассмотрим, какие тесты должны быть пройдены для проверки работоспособности ML-продукта. 3 категории тестов для ML-систем Согласно концепции MLOps, полный конвейер разработки включает в себя три основных компонента: конвейер данных,...

MLOps для ИИ: AI-шлюз в MLflow

Зачем разработчики MLflow внедрили в этот MLOps-фреймворк инструмент оптимизации использования и управления различными провайдерами больших языковых моделей, чем он полезен и как использовать AI Gateway от Databricks. Что такое MLflow AI Gateway и зачем это нужно Напомним, MLflow от Databricks представляет собой платформу с открытым исходным кодом, которая помогает управлять...

Шаблон стека MLOps-инструментов и ТОП-5 практик его внедрения

Как внедрить ключевые идеи MLOps и определиться с набором инструментов для непрерывной разработки и поставки систем машинного обучения. Лучшие практики и шаблон представления техстека. С чего начать: определение структуры проекта Напомним, концепция MLOps ориентирована на устранение организационных и технических разрывов между разнопрофильными участниками процессов создания систем машинного обучения. Когда речь...

Стандартизация MLOps с CRISP-ML

Что представляет собой межотраслевой стандартный процесс машинного обучения CRISP-ML(Q), из каких этапов и задач он состоит, а также как согласуется с концепцией MLOps. Что такое CRISP-ML(Q) и при чем здесь MLOps Стандартизация подходов и процессов позволяет унифицировать и масштабировать лучшие практики управления исследованиями и разработкой, в т.ч. распространяя их на...

Horovod на Databricks для MLOps в глубоком обучении

Из чего состоит инфраструктура глубокого обучения Databricks и как масштабировать Deep Learning для нескольких графических процессоров или распределенных вычислений. Знакомимся с очередным MLOps-инструментом под названием Horovod. Что Horovod и как его использовать в Databricks Мы уже писали, почему глубокому обучению не обойтись без MLOps-инструментов, реализующих идеи DevOps для автоматизации разработки,...

Эффективный MLOps с TAO Toolkit от NVIDIA

Сегодня познакомимся с набором инструментов TAO Toolkit от NVIDIA на основе TensorFlow и PyTorch, который позволяет получить эффективный рабочий процесс с помощью лучших практик MLOps и возможностей трансферного обучения за счет оптимизации тренировки модели и ее пропускной способности для логического вывода на целевой платформе. Что такое TAO Toolkit от NVIDIA...

Как развернуть ML-модель в production: шаблоны эффективного MLOps от Databricks

Мы уже писали, какие инструменты пригодятся MLOps-инженеру для развертывания моделей машинного обучения в производственных средах. Сегодня рассмотрим, как сделать это, используя MLOps-паттерны и средства платформы Databricks Lakehouse. MLOps в production: шаблоны развертывания на платформе Databricks MLOps представляет собой набор лучших практик и инструментов для автоматизации управления кодом, данными и моделями,...

Машинное обучение с Apache Flink: основные концепции ML-библиотеки

Как построить конвейер машинного обучения с помощью библиотеки Flink ML, из каких компонентов она состоит и как работает, а также что позволяет объединить алгоритмы потоковой обработки данных Apache Flink с ML-моделями. Что такое Flink ML Помимо MLeap, библиотеки сериализации для моделей машинного обучения, Apache Flink также включает Flink ML —...

Как построить и запустить свой MLOps-конвейер с MyMLOps

Вчера я нашла очень интересный MLOps-проект, который позволяет построить конвейер поддержки жизненного цикла системы машинного обучения, используя более 50 популярных инструментов. Что такое MyMLOps и как это пригодится ML-инженерам. Что такое MyMLOps: новый сервис для MLOps Чтобы реализовать идеи концепции MLOps автоматизации всего жизненного цикл системы машинного обучения, от подготовки...