Машинное обучение на Python

6-дневный практический курс по основам машинного обучения для специалистов по аналитике данных, разработчиков и руководителей, которые хотят освоить базовые понятия Machine Lerning.

Код курса Даты начала курса Стоимость обучения Длительность обучения Формат обучения
PYML
24 февраля 2025
26 мая 2025
11 августа 2025
54 000 руб. 24 ак.часов
Количество дней: 6
Дистанционный
Регистрация

О продукте:

Машинное обучение (Machine Learning) — это раздел искусственного интеллекта, изучающий математические, статистические и вычислительные методы для разработки алгоритмов, способных обучаться и решать задачи не прямым способом, а на основе поиска закономерностей в разнообразных входных данных. Решение вычисляется не по точно заданной формуле, а по установленной зависимости результатов от конкретного набора признаков и их значений.

На практике машинное обучение широко применяется в широком спектре исследовательских и прикладных задач:

  • прогнозирование событий и ситуационный анализ, например, отток клиентов в ритейле или заблаговременное предсказание поломок промышленного оборудования;
  • распознавание образов (изображений, лиц, голоса и т.д.);
  • классификация образцов, в частности, рентгеновских снимков для постановки диагноза;
  • выявление мошеннических операций (антифрод-системы в банках и cybersecurity).

Как именно Machine Learning можно использовать для конкретных бизнес-кейсов, вы узнаете в рамках нашего образовательного курса «Введение в машинное обучение».

Аудитория:

Специалисты по работе с большими данными, разработчики, руководители, желающие понять принципы функционирования методов машинного обучения и получить практический навык построения базовых моделей.

Уровень подготовки:

О курсе:

Данный курс является введением в тематику машинного обучения.  В курсе будет рассказано о месте машинного обучения в области искусственного интеллекта, изложены математические основы методов машинного обучения, сформулированы базовые задачи, которые могут быть решены с помощью методов машинного обучения. Большое внимание в курсе уделено практическому решению задач с использованием методов машинного обучения на языке Python. По окончанию курса вы овладеете основными навыками, необходимыми для решения базовых задач в области искусственного интеллекта.

Продолжительность: 6 дней, 24 академических часа.

Соотношение теории к практике 50/50

Программа курса «Машинное обучение на Python»

1. Место машинного обучения в области искусственного интеллекта

Теоретическая часть: основные понятия; классификация задач, решаемых с помощью методов машинного обучения; виды данных, понятие датасета.
Практическая часть: первичный анализ датасета, предобработка данных.

2. Классификация, деревья, случайный лес

Теоретическая часть: определение и примеры задач классификации. Математическое описание модели решающего дерева в задачи бинарной классификации. Метрики бинарной классификации.
Практическая часть: решение задач бинарной и множественной классификаций.

3. Линейные модели для классификации и регрессии

Теоретическая часть: определение и примеры задач регрессии. Математическое описание модели линейной регрессии. Метрики задач регрессии. Способы регуляризации.
Практическая часть: решение задачи регрессии.

4. Кластеризация и снижение размерности

Теоретическая часть: определение и примеры задач кластеризации. Математическое описание модели kNN. Связь кластеризации с понижением размерности пространства объектов датасета.
Практическая часть: решение задачи кластеризации и понижения размерности данных.

5. Решение ml-задачи на текстовых данных

Теоретическая часть: введение в NLP, обработка текстовых данных, векторные представления текста.
Практическая часть: решение задачи классификации на текстовом корпусе.

6. Использование моделей машинного обучения в production

Теоретическая часть: сериализация/десериализация объектов в Python, фреймворк Flask.
Практическая часть: создание веб-сервиса на фреймворке Flask.

Скачать программу курса « PYML: Машинное обучение на Python» в формате pdf

Отправить ссылку на:

Чему Вы научитесь:

  • понимать, что такое машинное обучение и искусственный интеллект;
  • знать, как эффективно использовать инструменты Data Science в бизнесе;
  • разберетесь с математическими основами Machine Learning;
  • освоите базовые методы машинного обучения;
  • сможете обрабатывать датасеты для подготовки к моделированию;
  • строить собственные модели Machine Learning;
  • интерпретировать результаты моделирования.

Что Вы получите:

Успешно окончив курс «Машинное обучение на Python» в нашем лицензированном учебном центре, вы получите удостоверение о повышении квалификации установленного образца.

Кто проводит курс

Конорев Олег
Академия Федеральной службы безопасности Российской Федерации (Москва, 2012)
Профессиональные компетенции:
  • Руководитель группы Data Science в НИИ “Квант”, Москва
  • Computer vision (CV) – решение задач по классификации и детектировании объектов на фото и видео, идентификации человека,  сегментации изображений и распознаванию текста с библиотеками OpenCV, Tensorflow API и архитектурами нейронных сетей  Yolo, SSD, fRCNN, U-net и пр.
  • Natural language processing (NLP) – решение задач по классификации текстов, извлечению именованных сущностей (NER) и ключевых слов с библиотеками gensim, nltk, fasttext, spacy и др. Построение различных архитектур на основе искусственных нейронных сетей с использованием различных представлений слов (Embedding, Word2Vec) и готовых нейросетевых решений (Bert, fastai)
  • Time series analysis – решение задач обработки, анализа и классификации аудио сигналов с библиотеками librosa, ffmpeg и различных архитектур нейронных сетей, а также предсказание значений временных рядов (time series forecasting) в приложении к котировкам активов с использованием классических решений (ARMA, ARIMA) и моделей на базе сверточных нейронных сетей (CNN), рекуррентных нейронных сетей (LSTM,GRU) и их комбинаций.
  • Проекты сегментации сигналов с различных датчиков и приборов и распознавания речи (speech-to-text) с облачными сервисами Yandex и Google.
Ермилов Дмитрий
Академия Федеральной службы безопасности Российской Федерации (Москва, 2012)
Профессиональные компетенции:
  • Ведущий Data Scientist в ФГУП “Центр информационных технологий”, Москва
  • Руководитель программ в Университете искусственного интеллекта, Москва.
  • Кандидат наук (2017 год, Московский государственный университет им. М.В. Ломоносова, Москва)

Чтобы записаться на курс PYML: Машинное обучение на Python позвоните нам по телефону +7 (495) 414-11-21 или заполните форму регистрации ниже.

Я даю свое согласие на обработку персональных данных и соглашаюсь с политикой конфиденциальности.
Поиск по сайту