Чем планирование запуска DAG в Apache AirFlow с объектом timedelta отличается от использования cron-выражений, в чем разница CronTriggerTimetable и CronDataIntervalTimetable, а также как создать собственный класс расписания. Объект timedelta vs cron-выражение: задание расписания запуска DAG в Apache AirFlow Apache AirFlow идеально подходит для классических пакетных ETL-сценариев, например, когда надо извлечь...
Как Apache AirFlow сериализует и десериализует данные, зачем с версии 2 включена обязательная сериализация DAG в JSON, почему для пользовательской сериализации рекомендуются словари или примитивы и что поможет сократить нагрузку на базу данных метаданных через настройку параметров сериализации в конфигурационном файле фреймворка. Сериализация данных в Apache AirFlow Чтобы сохранить данные...
24 августа вышел новый релиз Apache AirFlow. Знакомимся с новинками версии 2.10: гибкая настройка исполнителей для всей среды, конкретного DAG и отдельных задач, а также динамическое планирование набора данных и улучшения GUI. Гибкая настройка исполнителей Одной из самых главных новинок Apache AirFlow 2.10 стала конфигурация гибридного исполнения, позволяющая использовать несколько...
Как оповестить дата-инженера о задержке и результате выполнения задачи или всего DAG пакетного конвейера обработки данных: варианты отправки уведомлений в Apache AirFlow и особенности их применения. Варианты отправки уведомлений в Apache AirFlow Даже когда конвейер обработки данных разработан и успешно протестирован, в ходе его эксплуатации в рабочей среде неизбежно возникают...
Как написать DAG в Apache AirFlow без программирования, определив его конфигурацию в YAML-файле, и автоматически получить пакетный конвейер обработки данных с помощью Python-библиотеки DAG Factory. Демократизация разработки ETL-конвейеров или что такое DAG Factory в Apache AirFlow Хотя Apache AirFlow и так считается довольно простым фреймворком для оркестрации пакетных процессов и...
Почему триггеры отсроченных операторов Apache AirFlow не могут быть блокирующими и как сделать их асинхронными с помощью Python-библиотеки asyncio. Создание своего отсроченного оператора в Apache AirFlow О том, что такое отсроченные операторы, как они связаны с триггерами и асинхронными Python-вызовами в Apache AirFlow, мы недавно говорили здесь. Помимо использования существующих...
Что общего между триггерами, отсроченными операторами и асинхронными Python-вызовами в Apache AirFlow, чем они отличаются от стандартных операторов и сенсоров, для чего их использовать и как это сделать. Асинхронные вызовы и отсроченные операторы в Apache AirFlow В синхронном коде задачи выполняются последовательно, одна за другой. Причем каждая задача должна завершиться...
Чем уязвимость устаревшего метода аутентификации OpenID в Flask-AppBuilder опасна для Apache AirFlow и как это исправить? Обзор уязвимости CVE-2024-25128. Уязвимости OpenID для FAB в Apache AirFlow В конце февраля 2024 выяснилось, что в прошлом релизе Apache AirFlow 2.8, вышедшем 14 декабря прошлого года, обнаружилась критическая уязвимость, набравшая более 9 баллов...
Как изменить приоритет задачи в очереди исполнителя Apache AirFlow, на что влияет метод определения весов, каким образом можно балансировать нагрузку с помощью пулов и зачем настраивать количество слотов. Как приоритизировать задачи в очереди Apache AirFlow Дата-инженеры, которые используют Apache AirFlow для оркестрации пакетных процессов, знают, что задачи скапливаются в очереди...
Для чего нужен контекст задачи Apache AirFlow, что он собой представляет, какие включает объекты, как получить к ним доступ и чем они полезны дата-инженеру. Что такое контекст задачи Apache AirFlow В разработке ПО контекстом называется среда, в которой существует объект. Это понятие очень важно при использовании специализированных фреймворков. Например, в...