Кластерный анализ графов с медоидами: алгоритм k-medoids

Что такое алгоритм k-medoids, чем он отличается от k-means и как этот метод кластеризации применяется для анализа графов: принципы и инструменты. Что такое медоид и как устроен алгоритм кластеризации k-medoids Кластеризация — это метод машинного обучения для поиска кластеров или сообществ в наборе данных. Цель в том, чтобы найти кластеры,...

Что такое LLMOps или MLOps для больших языковых моделей

Зачем управлять трансферным обучением больших языковых моделей и что входит в это управление: знакомимся с расширением MLOps для LLM под названием LLMOps. Что такое LLMOps Большие языковые модели, воплощенные в генеративных нейросетях (ChatGPT и прочие аналоги), стали главной технологией уходящего года, которая уже активно используется на практике как частными лицами,...

Вместо Neosemantics: обзор Python-библиотеки rdflib-neo4j для графовой СУБД Neo4j

Что не так с Neosemantics и зачем нужна очередная библиотека для Neo4j: знакомство с Python-пакетом для RDF-графов rdflib-neo4j. Возможности, ограничения и пример использования. Что не так с Neosemantics и зачем нужна очередная библиотека для Neo4j Что такое RDF-графы, триплеты и плагин Neosemantics для работы с этими концепциями в графовой СУБД...

Машинное обучение с Greenplum: обзор ML-расширений

Как использовать Greenplum в проектах машинного обучения: знакомимся с расширением PostgresML и модулем pgvector. Возможности и ограничения плагинов, превращающих MPP-СУБД в полноценный MLOps-инструмент. Как превратить Greenplum в векторную базу данных с расширением pgvector Будучи вариацией PostgreSQL с механизмами массово-параллельной загрузки, Greenplum отлично справляется с огромным объемом данных. Однако, к хранилищам...

Автоматизированное тестирование в MLOps: что и как проверять?

Мы уже писали про особенности тестирования систем машинного обучения. Чтобы не повторяться, сегодня рассмотрим фреймворки для реализации идей MLOps, а также рассмотрим, какие тесты должны быть пройдены для проверки работоспособности ML-продукта. 3 категории тестов для ML-систем Согласно концепции MLOps, полный конвейер разработки включает в себя три основных компонента: конвейер данных,...

RAG-приложения и Neo4j: поддержка векторного индекса для LLM

Что не так с большими языковыми моделями, как RAG-приложения расширяют возможности LLM и зачем в графовой СУБД Neo4j добавлена поддержка векторного индекса. Зачем нужны RAG-приложения: ограничения базовых LLM-сетей С появлением ChatGPT и других генеративных нейросетей, большие языковые модели (LLM, Large Language Models) стали активно применяться для решения множества бизнес-задач, связанных...

Инструменты для ETL и миграций графовой базы данных Neo4j

Как организовать миграцию схемы Neo4j и импортировать в графовую базу данные из реляционных систем. Знакомимся с инструментами проекта Neo4j Labs: Neo4j-ETL и Neo4j-Migrations. Как работает Neo4j-ETL В рамках развития своих продуктов, таких как графовая СУБД Neo4j и экосистема элементов вокруг нее (Graph Data Science, Neo4j Bloom, Neo4j Browser и пр.),...

MLOps для ИИ: AI-шлюз в MLflow

Зачем разработчики MLflow внедрили в этот MLOps-фреймворк инструмент оптимизации использования и управления различными провайдерами больших языковых моделей, чем он полезен и как использовать AI Gateway от Databricks. Что такое MLflow AI Gateway и зачем это нужно Напомним, MLflow от Databricks представляет собой платформу с открытым исходным кодом, которая помогает управлять...

Зачем вам Neosemantics: RDF-триплеты в Neo4j

Что такое триплеты, чем они отличаются от обычных графов свойств и где используются на практике. Знакомимся с RDF и возможностями графовой СУБД Neo4j работать с этой структурой описания веб-ресурсов с помощью плагина Neosemantics. Что такое триплеты и при чем здесь RDF Триплеты (triples) — это текстовый формат, используемый для хранения...

Шаблон стека MLOps-инструментов и ТОП-5 практик его внедрения

Как внедрить ключевые идеи MLOps и определиться с набором инструментов для непрерывной разработки и поставки систем машинного обучения. Лучшие практики и шаблон представления техстека. С чего начать: определение структуры проекта Напомним, концепция MLOps ориентирована на устранение организационных и технических разрывов между разнопрофильными участниками процессов создания систем машинного обучения. Когда речь...

Гиперграфы и их реализация в HyperGraphDB

Чем гиперграфы отличаются от обычных графов знаний, где они используются на практике и как эта математическая концепция поддерживается в NoSQL-СУБД HyperGraphDB. Что такое гиперграф Гиперграф — это графовая модель данных, в которой отношения (гиперребра) могут соединять любое количество заданных узлов. Можно сказать, что это обобщение графа, в котором каждым ребром...

Стандартизация MLOps с CRISP-ML

Что представляет собой межотраслевой стандартный процесс машинного обучения CRISP-ML(Q), из каких этапов и задач он состоит, а также как согласуется с концепцией MLOps. Что такое CRISP-ML(Q) и при чем здесь MLOps Стандартизация подходов и процессов позволяет унифицировать и масштабировать лучшие практики управления исследованиями и разработкой, в т.ч. распространяя их на...

Архитектура данных в TSDB-решениях для анализа временных рядов

Чем базы данных временных рядов отличаются от реляционных и key-value хранилищ, какова модель данных для хранения метрик, значения которых меняются во времени, какие решения этой категории NoSQL-СУБД сегодня популярны на рынке и для чего они используются. Что такое база данных временных рядов и где она используется Как и следует из...

3 новых графовых алгоритма в Neo4j: новинки 2023

Как включить отрицательные веса в поиск пути, выявлять центральные и периферийные кластеры на основе заданной плотности, а также делать выборки из больших графов для масштабирования машинного обучения. Знакомимся с графовыми алгоритмами, недавно добавленными в библиотеку Neo4j Graph Data Science 2.4: декомпозиция K-ядра, алгоритм кратчайшего пути Беллмана-Форда и случайное блуждание с...

Horovod на Databricks для MLOps в глубоком обучении

Из чего состоит инфраструктура глубокого обучения Databricks и как масштабировать Deep Learning для нескольких графических процессоров или распределенных вычислений. Знакомимся с очередным MLOps-инструментом под названием Horovod. Что Horovod и как его использовать в Databricks Мы уже писали, почему глубокому обучению не обойтись без MLOps-инструментов, реализующих идеи DevOps для автоматизации разработки,...

Что такое GQL и при чем здесь Cypher: новый стандарт языка запросов к графам

Кто и зачем создает аналог SQL для запросов к графовым базам данных, когда выйдет официальная версия стандарт и при чем здесь Cypher из Neo4j. Что такое GQL и кто его разрабатывает В рамках продвижения нашего курса по графовым алгоритмам в бизнес-приложениях мы часто рассказываем про инструменты хранения и анализа графовых...

Эффективный MLOps с TAO Toolkit от NVIDIA

Сегодня познакомимся с набором инструментов TAO Toolkit от NVIDIA на основе TensorFlow и PyTorch, который позволяет получить эффективный рабочий процесс с помощью лучших практик MLOps и возможностей трансферного обучения за счет оптимизации тренировки модели и ее пропускной способности для логического вывода на целевой платформе. Что такое TAO Toolkit от NVIDIA...

Что такое BioCypher: возможности Neo4j для биомедицины

Зачем биомедикам понадобился свой язык описания онтологий, как эти задачи решает BioCypher и при чем здесь Neo4j: практическое приложение Data Science и графовых алгоритмов в биомедицинской сфере. Что такое BioCypher Графовые алгоритмы активно применяются в биомедицине для анализа различных биологических данных, таких как геномные, протеомные, данные о белковых взаимодействиях и...

Как развернуть ML-модель в production: шаблоны эффективного MLOps от Databricks

Мы уже писали, какие инструменты пригодятся MLOps-инженеру для развертывания моделей машинного обучения в производственных средах. Сегодня рассмотрим, как сделать это, используя MLOps-паттерны и средства платформы Databricks Lakehouse. MLOps в production: шаблоны развертывания на платформе Databricks MLOps представляет собой набор лучших практик и инструментов для автоматизации управления кодом, данными и моделями,...

Как построить и запустить свой MLOps-конвейер с MyMLOps

Вчера я нашла очень интересный MLOps-проект, который позволяет построить конвейер поддержки жизненного цикла системы машинного обучения, используя более 50 популярных инструментов. Что такое MyMLOps и как это пригодится ML-инженерам. Что такое MyMLOps: новый сервис для MLOps Чтобы реализовать идеи концепции MLOps автоматизации всего жизненного цикл системы машинного обучения, от подготовки...