Журналирование событий в Apache Spark и сжатие лог-файлов

Когда журналирование событий может привести к OOM-ошибке, где отслеживать системные метрики приложения Apache Spark, зачем сжимать лог-файлы и как это сделать. Логирование системных метрик в приложении Apache Spark Поскольку фреймворк Apache Spark изначально предназначен для создания высоконагруженных распределенных приложений пакетной и потоковой обработки больших объемов данных, он позволяет отслеживать системные...

4 модели потоковой парадигмы обработки данных

Чем пакетная парадигма обработки данных отличается от пакетной и как она реализуется на практике: принципы работы и воплощение в Big Data на примере Apache Spark, Kafka и Flink. Еще раз о разнице потоковой и пакетной парадигмы обработки данных Пакетная обработка и потоковая обработка — это две разные парадигмы обработки данных....

Обратное давление в потоковой передаче событий

Что означает термин backpressure и зачем создавать обратное давление в streaming-системах: разбираемся с методами управления пропускной способностью потоковой передачи событий на примере Apache Kafka, Flink, Spark и NiFi. Что такое обратное давление: backpressure в конвейерах потоковой обработки данных Понять, как работает сложная концепция, проще всего на простых примерах. Это общее...

Stateful-операторы в Apache Spark Structured Streaming

Как выполнение нескольких stateful-операторов в одном потоке снижает стоимость обработки данных: возможности и ограничения Spark Structured Streaming. Про водяные знаки и состояния в потоковой передаче событий. Stateful-операторы и водяные знаки в потоковой обработке данных Благодаря распределенной обработке микропакетов в памяти Spark Structured Streaming позволяет обрабатывать огромные объемы данных очень быстро....

Бесплатный митап «Scala как язык разработки Spark-приложений»

Школа Больших Данных продолжает серию митапов по Apache Spark. Митап состоится 14 февраля 2024 года в 17:00 МСК. Мероприятие рассчитано на инженеров данных, разработчиков и просто интересующихся. Будучи мощным фреймворком разработки распределенных приложений, Apache Spark позволяет писать код на нескольких языках программирования: Scala, Java, R, Python. Сам фреймворк написан на...

Как Apache Spark планирует и запускает задания в кластере

Какие механизмы и компоненты позволяют Apache Spark планировать задания и эффективно утилизировать ресурсы кластера. Чем статическое разделение ресурсов отличается от динамического, и как настроить планировщик для ускорения вычислений. Планирование заданий в Apache Spark Распределенный характер Apache Spark предполагает наличие инструментов для разделения ресурсов между вычислениями. В режиме кластера каждое приложение...

Как настроить оборудование для ускорения работы Apache Spark

Зачем размещать задания Apache Spark на узлах HDFS, какую пропускную способность сети передачи данных выбрать, почему не рекомендуется использовать RAID для жестких дисков, сколько выделить памяти и ядер ЦП. Рекомендации по настройке оборудования для Spark-приложений На практике большинство заданий Spark считывает входные данные из внешней системы хранения, например, файловой системы...

Профилирование PySpark-кода: пример с приложением Apache Spark для Python-разработчика

Что такое профилирование кода, зачем это нужно и как работают Python-профилировщики в приложениях Apache Spark. Пример профилирования PySpark-программы. Что такое профилирование и почему это важно для PySpark-приложений Будучи написанном на java и Scala, Apache Spark также поддерживает декларативные API-интерфейсы Python, которые позволяют разработчику писать и запускать код на этом более...

Барьерный режим выполнения в Apache Spark и при чем здесь глубокое обучение

Что такое барьерный режим выполнения в Apache Spark, чем он отличается от вычислительной модели MapReduce, как связан с глубоким машинным обучением и где используется на практике. Что такое барьерный режим выполнения в Apache Spark Способ выполнения заданий Spark определяется режимом выполнения приложения, заданным на уровне фреймворка. На платформе. Именно от...

Все успешно: файл _SUCCESS в рабочих процессах Apache Spark

Когда и зачем Spark-приложение создает файл _SUCCESS, почему в нем нет данных, как его использовать, можно ли обойтись без него и как это сделать. Пример запуска PySpark-приложения в Google Colab. Когда и зачем Spark-приложение создает файл _SUCCESS В Apache Spark при выполнении операций записи с использованием таких методов, как saveAsTextFile(),...

Поиск по сайту