Недавно мы рассматривали практический пример разделения большого датафрейма Apache Spark на несколько разделов. Сегодня поговорим о том, как их объединить с помощью механизм AQE и...
В данном разделе мы публикуем информационно-аналитические статьи и новости о технологиях Больших Данных (Big Data), машинного обучения (Machine Learning), Data Science, администрировании распределенных кластеров Hadoop, NoSQL, Kafka, Spark, а также реальные истории и лучшие практики их прикладного использования (use cases и best practices) в российских и зарубежных компаниях.
Трудности дата-инженерии: отличия от разработки ПО и внедрение CI/CD
Чем инженерия данных отличается от разработки ПО, как организовать оркестрацию конвейеров обработки данных и внедрить лучшие практики CI/CD. Почему дата-инженерия отличается от разработки ПО При...
6 лайфхаков работы с DAG в Apache AirFlow для дата-инженера
Что такое код верхнего уровня в Apache AirFlow, почему его следует избегать и как это сделать: шаблонные переменные, динамическое сопоставление задач, Python-функции и библиотеки для...
Средства обеспечения безопасности в приложениях Apache Spark
В этой статье для дата-инженеров и разработчиков распределенных приложений рассмотрим, какие механизмы обеспечения информационной безопасности поддерживает Apache Spark и как организовать безопасное взаимодействие Spark-приложения с...
5 советов по проектированию процессоров в Apache NiFi
Поскольку Apache NiFi позволяет не только использовать готовые процессоры, но и разработать свой собственный, дата-инженеру полезно знать лучшие практики проектирования таких обработчиков Flow File. Принцип...
Под капотом табличного хранилища Apache Flink
Год назад мы уже писали, как в Apache Flink появились табличные хранилища и зачем они нужны. Сегодня заглянем под капот Flink Table Store, познакомившись со...
Kafka Streams vs ksqlDB: что и когда использовать
Недавно мы писали, чем Kafka Streams отличается от Consumer API. Сегодня рассмотрим, в чем разница между Kafka Streams и ksqlDB, а также разберем, почему использовать...
Кто кому заплатил: пример поиска банковских транзакций в Neo4j
Чтобы показать еще один вариант использования графовой базы данных Neo4j, сегодня реализуем небольшое Python-приложение, которое генерирует граф знаний в облачной платформе Aura DB. Ищем финансовые...
ClearML для полного MLOps: примеры и возможности
Чтобы сделать наши курсы для специалистов по Data Science и ML-инженеров еще более полезными, сегодня познакомимся с очень мощным инструментом MLOps – open-source платформой ClearML....
В помощь дата-инженеру: как организовать конвейер инкрементной загрузки данных
Инкрементные конвейеры загрузки больших объемов данных в корпоративное хранилище или озеро как самый экономичный способ масштабирования архитектуры данных. Разбираемся, как дата-инженеру эффективно организовать такие ETL-конвейеры....