Что такое WSL, Docker и как запустить веб-сервер Apache AirFlow в контейнере на локальной машине в Ubuntu поверх Windows вместо любимого Google Colab. Пошаговое руководство для начинающих дата-инженеров. Краткий ликбез по WSL и Docker для любителей Windows Обычно я всегда запускала веб-сервер Apache AirFlow в интерактивной среде Google Colab, которая...
Почему DevOps-подходы не так просто внедрить в инженерию данных, что не так с реестром Apache NiFi и зачем расширять набор инструментов Toolkit собственным Java-приложением для автоматизированной миграции потоковых конвейеров в разные среды развертывания. Что не так с реестром Apache NiFi с точки зрения DevOps-инженера Изначально Apache NiFi был создан как...
Чем инженерия данных отличается от разработки ПО, как организовать оркестрацию конвейеров обработки данных и внедрить лучшие практики CI/CD. Почему дата-инженерия отличается от разработки ПО При том, что между инженерией данных и разработкой программного обеспечения (ПО) очень много общего, эти ИТ-дисциплины довольно сильно отличаются. Хотя в обоих направлениях используется облачная инфраструктура,...
Сегодня рассмотрим, как развернуть модель машинного обучения в конвейере Apache Kafka, используя потоковый API технологии удаленного вызова процедур от Google под названием gRPC и сервер ML-моделей TensorFlow Serving. Краткий ликбез по gRPC Напомним, gRPC – это технология интеграции систем, включая клиентский и серверный компоненты, основанная на удаленном вызове процедур в...
Мы уже писали, как можно развернуть контейнерные приложения Apache Flink для обработки больших объемов данных в реальном времени. В продолжение этой темы сегодня сравним развертывание Flink-заданий в Kubernetes и в кластере AWS EMR. Flink-приложение в Kubernetes: преимущества и недостатки Apache Flink — это мощный фреймворк с открытым исходным кодом для...
Мы уже делали краткий обзор некоторых исполнителей задач Apache AirFlow. Сегодня рассмотрим более подробно механизмы запуска удаленных задач и разберемся, чем Celery Executor отличается от CeleryKubernetes Executor и как они работают. Виды и назначение исполнителей Apache AirFlow Напомним, Apache AirFlow состоит из нескольких компонентов: Веб-сервер, предоставляющий GUI для настройки DAG...
Как MLOps-инженеры платформы онлайн-курсов Udemy ускорили цикл разработки и внедрения проектов машинного обучения, используя возможности Amazon SageMaker для создания и отладки Spark-приложений в удаленном облачном кластере. MLOps на AWS Чтобы воспользоваться преимуществами бесшовной интеграции процессов разработки и развертывания машинного обучения согласно концепции MLOps, совсем не обязательно выстраивать собственную платформу из...
Что общего у FastAPI с BentoML, чем они отличаются и почему только один из них является полноценным MLOps-инструментом. Смотрим на примере операций разработки и развертывания API сервисов машинного обучения. Что общего у FastAPI с BentoML и при чем здесь MLOps С точки зрения промышленной эксплуатации, в проектах машинного обучения следует...
Недавно мы упоминали GraphQL как мощный и гибкий язык запросов к данным, хранящимся в графовых СУБД. Сегодня рассмотрим, чем эта технология может быть полезна в проектах Machine Learning, какие сложности с ней связаны и как их решить с помощью MLOps. GraphQL для ML: возможности и примеры Не будучи в чистом...
Почему в проектах машинного обучения накапливается технический долг, каковы главные факторы его появления и каким образом MLOps устраняет проблемы, связанные с разработкой, тестированием, развертыванием и сопровождением систем Machine Learning. Скрытый технический долг в ML-системах Технический долг означает дополнительные затраты, возникающие в долгосрочной перспективе, с которыми сталкивается команда, в результате выбора...