Особенности хранения и аналитической обработки JSON-документов в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL: объяснение бенчмаркингового теста. JSON в ClickHouse Недавно мы писали про бенчмаркинговое сравнение хранения и обработки JSON-данных в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL. В этом тесте, проведенном самими разработчиками ClickHouse, эта СУБД показала максимальную эффективность, которая обоснована...
Почему ClickHouse требует меньше места для хранения JSON-документов и быстрее выполняет аналитические запросы к ним по сравнению с MongoDB, Elasticsearch, DuckDB и PostgreSQL: бенчмаркинговый тест от разработчиков колоночной СУБД. Как Clickhouse делает быстрее агрегации в JSON-данных Хотя бенчмаркинговые тесты от вендоров редко бывают объективными, просматривать их довольно интересно. Недавно мне...
Как описать ETL-конвейер захвата, преобразования и передачи изменения данных в YAML-файле: пример конфигурации Flink CDC из PostgreSQL в Elasticsearch. ETL-конвейер Flink CDC в YAML-файле Apache Flink позволяет строить надежные конвейеры обработки данных, используя не только с внутренние API, но и с помощью дополнительных компонентов. Одним из таких компонентов является Flink...
Как без копирования анализировать данные из разных источников в реальном времени с помощью SQL-запросов: каталоги и коннекторы Trino. Коннекторы Trino: как они работают и что настроить в каталоге Вчера мы разобрали, как устроен кластер Trino – аналитического движка с массово-параллельной архитектурой (MPP, Massively Parallel Processing), который обрабатывает данные на нескольких...
Как передать JSON-документы из топика Kafka в Elasticsearch, используя OpenSearch Sink Connector. Подробная демонстрация с настройкой и регистрацией коннектора в Kafka Connect. Настройка sink-коннектора и отправка в Kafka Connect Как передать данные из Kafka в Elasticsearch, я уже показывала здесь, развернув экземпляр Kafka в облаке на платформе Upstash. Однако, с...
Практическая демонстрация потокового SQL-конвейера, который преобразует данные, потребленные из Apache Kafka, и записывает результаты в Elasticsearch, используя Debezium-коннекторы и задания Apache Flink в облачной платформе Decodable. Потребление сообщений из Apache Kafka Я уже показывала пример интеграции Apache Kafka и Elasticsearch с помощью sink-коннектора, а также конвейер с ClickHouse Cloud. Сегодня...
Недавно я писала, как с помощью source-коннектора Debezium организовать потоковый захват изменения данных из таблицы PostgreSQL путем публикации CDC-событий в Apache Kafka. Продолжая эту тему, сегодня покажу пример визуализации аналитики этих данных в Kibana, предварительно загрузив их в Elasticsearch с sink-коннектором Aiven. Постановка задачи и проектирование конвейера Как обычно, в...
Зачем биотехнологической платформе Polly от Elucidata понадобился API SQL-запросов в облачном сервисе Elasticsearch и как дата-инженеры реализовали его, развернув Delta Lake с AWS Atnena и S3. Что не так с SQL-запросами в облачном Elasticsearch на AWS Ежедневно биотехнологическая платформа Polly от Elucidata обрабатывает гигабайты биомолекулярных данных для биологов по всему...
В этой статье для обучения дата-инженеров и архитекторов распределенных систем рассмотрим, что такое наблюдаемость, как ее измерить и при чем здесь стандарт OpenTelemetry. А в качестве примера разберем, как французский маркетплейс Cdiscount управляет почти 1000 микросервисов в кластере Kubernetes с Apache Kafka, Jaeger, Elasticsearch и OpenTelemetry. Наблюдаемость распределенной системы: стандарт...
В этой статье для дата-инженеров рассмотрим пример конвейера анализа потокового видео с Youtube-каналов на Kafka, Spark Streaming и Elasticsearch c Kibana, связанных через процессоры Apache NiFi. Постановка задачи: ETL-конвейер анализа потоковых данных с Youtube Потоковые данные непрерывно генерируются тысячами источников, которые отправляют записи одновременно и в небольших размерах (порядка килобайт)....