Оптимизация производительности ClickHouse: ребалансировка шардов и профилирование запросов

Как равномерно распределить по шардам ClickHouse уже существующие данные, зачем профилировать запросы, какие профилировщики поддерживает эта колоночная СУБД и каким образом их использовать. Ребалансировка шардов в ClickHouse Какой бы быстрой не была база данных, ее работу всегда хочется ускорить еще больше. Одним из популярных способов ускорения распределенной СУБД является шардирование...

Интеграция ClickHouse с Apache NiFi

Как прочитать данные из ClickHouse в Apache NiFi или загрузить их в таблицу колоночной СУБД: настройки подключения, использование процессоров и тонкости потоковой интеграции. Подключение к ClickHouse из Apache NiFi Как и интеграция ClickHouse с Apache AirFlow, связь этой колоночной СУБД с приложением NiFi реализуется с помощью решения сообщества, средствами самого...

Внешние ресурсы и пользовательская обработка отказов в Apache Flink

Как расширить возможности Apache Flink с помощью дополнительных плагинов: подключение внешних ресурсов и обогащение отказов пользовательскими метками. Разбираемся с продвинутыми настройками для эффективной эксплуатации фреймворка. Внешние ресурсы Apache Flink Помимо процессора и памяти, многим рабочим нагрузкам также требуются другие ресурсы, например, графические процессоры для глубокого обучения. Для поддержки внешних ресурсов...

Управление ресурсами и планирование рабочей нагрузки в ClickHouse

Как эффективно распределять и использовать ресурсы ClickHouse, зачем ограничивать возможности пользователей с помощью квот и классифицировать рабочие нагрузки. Управление ресурсами в ClickHouse Благодаря своей децентрализованной архитектуре ClickHouse, когда один экземпляр включает несколько серверов, к которым напрямую приходят запросы пользователей, эта колоночная СУБД работает очень быстро. Для репликации данных и выполнения...

Изоляция приложений Apache Spark в одной среде Databricks с Lakeguard

Проблемы управления данными в мультиарендной среде или как Databricks решил изолировать клиентские приложения Apache Spark на общей виртуальной машине Java друг от друга и от самого фреймворка (драйвера и исполнителей). Знакомство с Lakeguard на базе каталога Unity. Проблемы управления данными в мультитенантной среде Компания Databricks не просто развивает и продвигает...

Пример потокового конвейера из Kafka в Elasticsearch на платформе Decodable

Практическая демонстрация потокового SQL-конвейера, который преобразует данные, потребленные из Apache Kafka, и записывает результаты в Elasticsearch, используя Debezium-коннекторы и задания Apache Flink в облачной платформе Decodable. Потребление сообщений из Apache Kafka Я уже показывала пример интеграции Apache Kafka и Elasticsearch с помощью sink-коннектора, а также конвейер с ClickHouse Cloud. Сегодня...

Обработка XML-документов в Greenplum

Как Greenplum хранит и обрабатывает XML-документы, зачем для этого нужны утилиты gpfdist и gpload, каковы их конфигурации для выполнения XSLT-преобразований XML-файлов и их загрузки/выборки во внешние таблицы MPP-СУБД. Работа с XML-документами и XSLT-преобразования в Greenplum Greenplum, как и PostgreSQL, также поддерживает работу со сложными типами данных и может вести себя...

Интеграция ClickHouse с Apache AirFlow

Чем полезна интеграция ClickHouse с Apache Airflow и как ее реализовать: операторы в пакете провайдера и плагине на основе Python-драйвера. Принципы работы и примеры использования. 2 способа интеграции ClickHouse с AirFlow Продолжая разговор про интеграцию ClickHouse с другими системами, сегодня рассмотрим, как связать эту колоночную СУБД с мощным ETL-движком Apache...

Задержка интеграции ClickHouse с Apache Kafka и как ее снизить

От чего зависит задержка передачи данных из Apache Kafka в ClickHouse, как ее определить и ускорить интеграцию брокера сообщений с колоночной СУБД: настройки и лучшие практики. Интеграция ClickHouse с Kafka Чтобы связать ClickHouse с внешними системами, в этой колоночной СУБД есть специальные механизмы –  интеграционные движки таблиц. Например, для взаимодействия...

Чек-лист перед запуском приложения Apache Flink в производство

Зачем устанавливать максимальный для каждого задания Apache Flink, для чего stateful-оператору пользовательский UUID, как выбрать подходящий бэкенд хранения состояний, от чего зависит оптимальный интервал создания контрольных точек и где настраивается высокая доступность менеджера заданий. 5 главных настроек перед запуском Flink-приложения в производственное развертывание Перед запуском приложения Apache Flink в производственное...

Контакты авторизированного учебного центра
«Школа Больших Данных»
Адрес:
127576, г. Москва, м. Алтуфьево, Илимская ул. 5 корпус 2, офис 319, БЦ «Бизнес-Депо»
Часы работы:
Понедельник - Пятница: 09.00 – 18.00
Остались вопросы?
Звоните нам +7 (495) 414-11-21 или отправьте сообщение через контактную форму. Также вы можете найти ответы на ваши вопросы в нашем сборнике часто задаваемых вопросов.
Оставьте сообщение, и мы перезвоним вам в течение рабочего дня
Я даю свое согласие на обработку персональных данных и соглашаюсь с политикой конфиденциальности.
Или напишите нам в соц.сетях
Поиск по сайту