Что такое Python-декораторы в Airflow, зачем они нужны, какие они бывают и чем полезны: ликбез по TaskFlow API на практическом примере DAG. Что такое Python-декораторы в Airflow и какие они бывают Будучи написанным на Python, Apache Airflow использует именно этот язык в качестве средства разработки дата-конвейеров. После определения функции в...
Чем обмен данными через XCom отличается от использования Dataset и какой из механизмов выбирать для обмена данными между задачами Apache Airflow: разбираем на практическом примере. Обмен данными через XCom В Apache Airflow есть несколько механизмов для обмена данными между задачами: XCom и набор данных (Dataset). При общей цели они предназначены...
Как применить пользовательскую функцию Python к объектам pandas в распределенной среде Apache Spark. Варианты использования Pandas UDF, applyInPandas() и mapInPandas() на практических примерах. Разница между Pandas UDF, applyInPandas и mapInPandas в Apache Spark Недавно я показывала пример сравнения быстродействия метода applyInPandas() с функцией apply() библиотеки pandas. Однако, помимо applyInPandas() в...
Как разработать свой плагин Apache AirFlow: пошаговое руководство с наглядной демонстрацией. Добавляем свои пункты меню в веб-интерфейс фреймворка и встраиваем пользовательскую HTML-страницу с новым эскизом Flask. Разработка своего плагина для AirFlow Вчера я рассказывала, как расширить функциональные возможности Apache AirFlow с помощью плагинов. Сегодня рассмотрим, как это сделать на практике....
Зачем нужны плагины в Apache AirFlow, как их создать и встроить в пакетный оркестратор для внедрения пользовательских операторов, хуков, датчиков или интерфейсов взаимодействия с внешними системами. Плагины AirFlow Продолжая недавний разговор про добавление пользовательского кода в Apache AirFlow, сегодня разберемся, как расширить функциональные возможности этого ETL-оркестратора с помощью встраиваемых модулей...
Чем метод applyInPandas() в Spark отличается от apply() в pandas и насколько он быстрее обрабатывает данные: сравнительный тест на датафрейме из 5 миллионов строк. Методы применения пользовательских функций к датафреймам в Spark и pandas Мы уже отмечали здесь и здесь, что Apache Spark позволяет работать с популярной Python-библиотекой pandas, поддерживая...
Как добавить пользовательский код в Apache AirFlow и где его хранить: лучшие практики и рекомендации для дата-инженера с примером создания и импорта своего пакета. Как хранить общий код в AirFlow Недавно мы писали про сложности управления DAG в многопользовательской среде Apache AirFlow. Однако, даже когда речь идет про однопользовательскую работу...
Что такое Chdb, зачем нужна эта библиотека и как ее использовать в коде Python-приложения для анализа больших данных в ClickHouse без разворачивания полноценного сервера этой колоночной СУБД. Как и зачем работать с ClickHouse без сервера СУБД ClickHouse является мощным инструментом аналитики больших данных, который требует соответствующей инфраструктуры. Однако, иногда нужно...
Что не так с работой Apache AirFlow в многопользовательской среде, зачем предоставлять каждой команде свое развертывание ETL-фреймворка, каковы недостатки этого решения и как организовать мультитенантный кластер. Почему Apache Airflow не предназначен для многопользовательского использования В современной дата-инженерии Apache AirFlow стал наиболее популярным инструментом для пакетных ETL-процессов. Чтобы использовать его наиболее...
Что такое дополнительный выходной поток DataStream в Apache Flink, зачем это нужно, чем механизм SideOutput лучше операторов filter и split, а также как его использовать: примеры на Python. Что такое дополнительный выходной поток DataStream в Apache Flink и зачем это нужно Хотя выходные результаты большинства операторов API DataStream в Apache...