LIMIT vs TABLESAMPLE: битва операторов Spark SQL

Сегодня рассмотрим особенности использования оператора LIMIT в Spark SQL: как он выполняется и почему вместо него лучше использовать оператор TABLESAMPLE. Для этого в рамках обучения дата-инженеров, разработчиков распределенных приложений и аналитиков данных заглянем под капот оптимизатора Catalyst в Apache Spark и сравним физические планы выполнения SQL-запросов. Недостатки оператора LIMIT в...

Доступ к данным через ODBC и JDBC-драйверы в Spark-приложениях

В этой статье для разработчиков распределенных приложений и дата-инженеров разберем, как Spark-задание может подключиться к базе данных через JDBC и ODBC драйверы. В качестве примера рассмотрим код на PySpark и Python-библиотеки pyodbc, а также JDBC-коннекторы в Spark SQL. Доступ к БД из кластера Spark с ODBC-драйвером Напомним, получить соединение с...

Take() вместо collect() и еще 2 совета по Apache Spark для дата-инженера

Постоянно добавляя в наши курсы для дата-инженеров и разработчиков распределенных Spark-приложений интересные примеры, сегодня мы хотим поделиться с вами простыми, но эффективными приемами, как улучшить производительность этого вычислительного движка. Чем метод take() лучше collect() в Apache Spark, какие открытые инструменты помогут выполнить профилирование кода и как быстро прочитать множество маленьких...

Под капотом Apache Spark: 3 секрета для дата-инженера и разработчика

Постоянно добавляя в наши курсы по Apache Spark полезные материалы, сегодня мы рассмотрим, что происходит под капотом этого вычислительного движка, чтобы помочь разработчикам распределенных приложений и дата-инженерам повысить его эффективность. Тонкости сериализации данных, компиляции SQL-запросов в JavaBytecode и сборка мусора. 2 библиотеки сериализации данных в Apache Spark В распределенных системах...

Улучшения Apache Spark Structured Streaming в проекте Lightspeed от Databricks

28 июня 2022 года в сотрудничестве с сообществом разработчиков Apache Spark компания Databricks анонсировала проект Lightspeed, новое поколение этого потокового движка. Читайте далее, что это такое и чем оно отличается от классического Apache Spark Structured Streaming. Потоковая обработка данных с Apache Spark Structured Streaming Потоковая передача событий весьма востребована современным...

Spark vs Dask для Data Science-проектов

Сегодня разберемся, когда для Data Science-проектов вместо Apache Spark, самого популярного вычислительного движка аналитики больших данных, стоить выбрать Dask – легковесную Python-библиотеку для параллельных вычислений. И, наоборот, в каких случаях инженер данных и Data Scientist получают преимущества, выбирая Spark. Что такое Dask и зачем он нужен Data Scientist’у Прежде чем...

3 способа прервать DAG lineage в Apache Spark

Недавно мы говорили про трудности наблюдаемости данных вообще и возможности мониторинга их происхождения в Apache Spark. Сегодня рассмотрим, зачем дата-инженеру прерывать DAG lineage в Spark-приложениях и как это сделать. Что такое DAG lineage и зачем его прерывать? Напомним, Apache Spark использует концепция DAG для выполнения распределенных вычислений. Направленный ациклический граф...

Apache Spark 3.3.0: ТОП-10 новинок июльского релиза 2022

16 июня 2022 года вышла новая версия Apache Spark – 3.3.0. Разбираем главные фичи этого минорного релиза, особенно важные для дата-инженера и разработчика распределенных приложений: от расширения поддержки ANSI SQL до профилирования UDF на Python. Главные изменения Apache Spark 3.3.0 Apache Spark 3.3.0 — это четвертый релиз линейки 3.x, в...

Происхождение данных в Apache Spark со Spline и не только

Вчера мы рассказывали, почему важна наблюдаемость данных какие платформы помогают комплексно обеспечить все ее аспекты. В продолжение этой темы сегодня заглянем под капот происхождения данных в Apache Spark с помощью агента Spline и других способов. Трудности data lineage в Apache Spark Когда конвейер данных выходит из строя, дата-инженеру нужно скорее...

Мониторинг заданий Apache Spark с помощью слушателей

Что такое SparkListener, какие встроенные слушатели бывают в Apache Spark, как написать собственный перехватчик событий и зачем это нужно разработчику распределенного приложения. Также рассмотрим, как реализовать свой слушатель для приложения на PySpark и зачем включать уровень логирования INFO для SparkContext. Что такое слушатель Spark Apache Spark позволяет быстро обрабатывать большие...

Как определить оптимальную конфигурацию Spark-приложения

Сколько ядер ЦП выделить на каждый исполнитель и каково оптимальное количество памяти для Spark-приложения при статическом и динамическом выделении ресурсов. Важные вопросы эффективной утилизации кластера, с которыми сталкивается каждый дата-инженер и разработчик распределенных программ. Запуск распределенного приложения через spark-submit Повысить эффективность работы приложения Apache Spark можно не только через оптимизацию...

Роль Tungsten в Apache Spark

Что такое Tungsten, зачем он нужен в Apache Spark и как этот проект устраняет узкие места вычислительного движка, чтобы повысить его производительность и эффективность утилизации ресурсов за счет приближения JVM к bare metal. Рассматриваем самые важные для разработчика распределенных приложений особенности и разбираемся, при чем здесь вольфрам и почему с...

Оконные функции PySpark в Google Colab: пара примеров

Специально для обучения начинающих аналитиков данных и дата-инженеров сегодня рассмотрим примеры выполнения простых SQL-запросов и оконных функций в Apache Spark на Google Colab. Как быстро проанализировать датафрейм из CSV-файлов с помощью нескольких строк на PySpark. Запуск и использование PySpark в Google Colab Предположим, необходимо определить потенциальный доход от проведения обучающих...

Анализ данных Youtube в реальном времени с Apache NiFi, Kafka и Spark Streaming

В этой статье для дата-инженеров рассмотрим пример конвейера анализа потокового видео с Youtube-каналов на Kafka, Spark Streaming и Elasticsearch c Kibana, связанных через процессоры Apache NiFi. Постановка задачи: ETL-конвейер анализа потоковых данных с Youtube Потоковые данные непрерывно генерируются тысячами источников, которые отправляют записи одновременно и в небольших размерах (порядка килобайт)....

3 режима вывода в Apache Spark Structured Streaming

Какие бывают режимы вывода в структурированной потоковой передаче Spark, чем они отличаются и как их использовать на практике: разбираемся на практическом примере. Краткий ликбез по output modes в Apache Spark Structured Streaming для обучения дата-инженеров и разработчиков распределенных приложений. Что такое режимы вывода в Apache Spark Structured Streaming Apache Spark...

3 метода управления разделами в Apache Spark

Мы уже рассказывали про функции перераспределения данных по разделам coalesce() и repartition(). Сегодня сравним их работу с еще одним методом управления разделами в Apache Spark и разберем, как все они могут помочь дата-инженеру и разработчику распределенных приложений повысить эффективность этого популярного фреймворка аналитики больших данных. Отобрать и поделить: лучшие практики партиционирования данных...

Настройка кластера Apache Spark и Hive на Hadoop

Как настроить Apache Spark 3.0.1 и Hive 3.1.2 на Hadoop 3.3.0: тонкости установки и конфигурирования для обучения администраторов кластера и инженеров с примерами команд и кода распределенных приложений. Запуск Spark-приложения на Hadoop-кластере Прежде всего, для настройки кластера Apache Spark нужен работающий кластер Hadoop. Сама установка и настройка выполняется в 2...

Тонкости SparkSession в Apache Spark Structured Streaming

Может ли быть несколько сеансов в одном Spark-приложении с разной конфигурацией, зачем нужен метод foreachBatch() в структурированной потоковой передаче и чем он отличается от foreach(), почему возникает ошибка Table or view not found: microBatch и как ее обойти. В рамках обучения разработчиков Apache Spark и дата-инженеров заглядываем под капот этого...

Широковещательное соединение в Apache Spark SQL: ликбез и примеры

В этой статье для дата-инженеров и аналитиков данных, рассмотрим, что такое широковещательные соединение в Apache Spark SQL, чем оно полезно и как работает на практических примерах. BROADCAST JOIN в SELECT-запросах Spark SQL, а также краткий ликбез по подсказкам или хинтам. Что такое широковещательное соединение в Apache Spark SQL Распределенная природа...

Аналитика больших данных в реальном времени с Apache Kafka, Spark, ClickHouse и S3

Практический пример аналитики больших данных в реальном времени с Apache Spark, Kafka, ClickHouse и AWS S3: возможности, архитектура, также специально для дата-инженеров и разработчиков распределенных приложений рассмотрим, сколько времени нужно для разрешения каждого вызова API в определенном временном диапазоне. Анализ событий пользовательского поведения в реальном времени Основным продуктом международной ИТ-компании...