ACID-транзакции в Apache Hive: настройка, принципы работы и ограничения

В рамках обучения аналитиков данных и дата-инженеров тонкостям работы с Apache Hive, сегодня разберем особенности ACID-транзакций в этом популярном инструменте класса SQL-on-Hadoop. Зачем и когда нужны ACID-транзакции в Apache Hive, какие параметры нужно настроить для их выполнения, при чем здесь блокировки, каковы ограничения и особенности уплотнения дельта-каталогов. Еще раз про...

Один на всех: реализация единого API для унифицированной аналитики больших данных c Apache Flink и Kafka в Pinterest

Недавно мы писали, что в новой версии Apache Flink 1.14, которая вышла в конце сентября 2021 года, сделаны попытки объединения потоковой и пакетной парадигм обработки данных. Сегодня рассмотрим, как подобное стремление к унификации реализуется на практике дата-инженерами фотохостинга Pinterest, которые используют Apache Flink как универсальный инструмент аналитики больших данных в...

Потоковая аналитика больших данных в Udemy: система отслеживания событий на Apache Hive и Kafka в AWS

Сегодня разберем кейс платформы онлайн-обучения Udemy по разработке собственной системы потоковой аналитики больших данных о событиях пользовательского поведения на Apache Kafka, Hive и сервисах Amazon. Про требования к инфраструктуре отслеживания событий и их реализацию с помощью Apache Kafka, Hive, Kubernetes, AWS S3 и EMR, а также чем AVRO лучше Protobuf....

Бакетирование vs партиционирование в Apache Hive и Spark

В этой статье рассмотрим 2 способа физической группировки данных для ускорения последующей обработки в Apache Hive и Spark: партиционирование и бакетирование. Чем они отличаются друг от друга, что между ними общего и какой рост производительности дает каждый из методов в зависимости от задач аналитики больших данных средствами Spark SQL. Еще...

Интерактивная аналитика больших данных с Apache Spark SQL и Livy: кейс Pinterest

Сегодня в качестве полезного примера для обучения дата-инженеров и разработчиков Spark-приложений, разберем кейс компании Pinterest по интерактивной аналитике больших данных средствами SQL-модуля этого популярного фреймворка. Читайте далее, почему дата-инженеры решили заменить HiveServer2 на Spark Thrift JDBC/ODBC, зачем понадобилось писать собственный клиент поверх Apache Livy и как это было сделано. Зачем...

Apache Iceberg для Data Lake: что это такое, зачем нужно и как работает

В недавней статье про преимущества хранилища метаданных Apache Hive и другие плюсы этого популярного инструмента SQL-on-Hadoop, мы упоминали формат открытых таблиц Iceberg как альтернативу для хранения огромных наборов аналитических данных. Он добавляет высокопроизводительные SQL-подобные таблицы в вычислительные механизмы Spark, Trino, Presto, Flink и Hive. Сегодня рассмотрим подробнее, что такое Apache Iceberg и...

Что такое индекс и почему его использование так важно при работе в Hive

В прошлый раз мы говорили про драйвер JDBC и его использование в Hive. Сегодня поговорим про особенности создания и работы индекса в распределенной Big Data платформе Apache Hive. Читайте далее про особенности работы с индексами в распределенной среде Big Data СУБД Hive. Какую роль играет использование индекса при обработке Big...

Перспективы Apache Hive: развитие или забвение?

Появившись более 10 лет назад, Apache Hive до сих пор является самым популярным инструментом стека SQL-on-Hadoop и активно используется для аналитики больших данных. Однако, технологии Big Data постоянно развиваются: Spark все чаще заменяет Hadoop MapReduce, а вместо HDFS все чаще используются объектные облачные хранилища: AWS S3, Delta Lake, Apache Ozone...

Еще пара примеров по Apache Hive и Spark: безопасный доступ и реализация SCD

В этой статье для разработчиков распределенных приложений Apache Spark, администраторов SQL-on-Hadoop и дата-аналитиков рассмотрим особенности аутентификации удаленного пользователя, а также отслеживание измененных данных в таблицах Apache Hive. Читайте далее, зачем ограничивать доступ к keytab-файлу в кластерах с поддержкой защищенного протокола Kerberos, а также как реализовать отслеживание медленно меняющихся измерений в...

От JDBC-подключения до SQL-запросов: пара примеров по Apache Hive, HBase и Spark

В рамках курсов по Apache Hadoop для дата-аналитиков и инженеров данных сегодня рассмотрим пару практических примеров работы с популярным SQL-on-Hadoop инструментом этой экосистемы. Читайте далее, как настроить соединение удаленного сервера Apache Hive к Spark-приложению через JDBC и решить проблему запроса таблицы HBase в Hive вместо повторной репликации данных. Подключение удаленного...

Поиск по сайту