Еще 4 особенности бакетирования таблиц в Apache Spark и 7 конфигураций их настройки

Продолжая разбирать особенности бакетирования таблиц в Apache Spark, сегодня мы рассмотрим несколько примеров, как дата-инженер и аналитик данных могут работать с этим методом оптимизации SQL-запросов. Также читайте далее, какие конфигурации Apache Spark SQL связаны с бакетированием таблиц и что нового появилось в 3-ей версии этого Big Data фреймворка, чтобы такой...

Apache Spark для дата-инженеров: трудности бакетирования и способы их решения

Бакетирование таблиц в Apache Spark – один из самых популярных методов оптимизации производительности задач последовательного чтения данных. Сегодня поговорим про сложности бакетирования с точки зрения дата-инженера, а также рассмотрим факторы, от которых зависит оптимальное количество бакетов. Большая проблема маленьких файлов и бакетирование таблиц в Apache Spark Напомним, бакетирование ускоряет выполнение...

На заметку разработчику: 3 причуды Apache Spark и как с ними бороться

Развивая наши курсы по Apache Spark, сегодня мы рассмотрим несколько особенностей, с разработчик которыми может столкнуться при выполнении обычных операции, от чтения архивированного файла до обращения к сервисам Amazon. Читайте далее, что не так с методом getDefaultExtension(), зачем к AWS S3 так много коннекторов и почему PySpark нужно дополнительно конфигурировать...

Что такое бакетирование таблиц в Apache Spark SQL и как это улучшает аналитику больших данных

Сегодня поговорим про бакетирование таблиц в Apache Spark для оптимизации производительности заданий и снижения затрат на кластер при их выполнении. Читайте далее, что такое Bucketing в Spark SQL и как это предотвращает операции перетасовки в приложениях аналитики больших данных. Что такое Bucketing и зачем это нужно в Big Data Бакетирование...

3 задания по Apache Hadoop для чайников: развлекательная проверка знаний

Сегодня в качестве пятничного развлечения для дата-инженеров, разработчиков распределенных приложений, администраторов, аналитиков и других специалистов по большим данным мы приготовили небольшой квиз по Apache Hadoop. Проверьте свое знание главной технологии Big Data, решив кроссворд, филворд и небольшой тест по основным компонентам и главным принципам работы этой платформы хранения и аналитики...

Быстрая OLAP-аналитика больших данных в Delta Lake c Apache Spark SQL и Presto

В этой статье рассмотрим, как сделать SQL-запросы к колоночному хранилищу больших данных с поддержкой ACID-транзакций Delta Lake еще быстрее с помощью Apache Presto. Читайте далее про синергию совместного использования Apache Spark и Presto в Delta Lake для ускорения OLAP-процессов при работе с Big Data. Еще раз об OLAP: схема звезды...

Конвейер CDC для Databricks Delta Lake: пример быстрого сбора и аналитики Big Data с Apache Kafka и Spark

Сегодня продолжим разбираться с реализацией CDC-подхода в современных Big Data решениях и погрузимся в Databricks Delta Lake – облачный уровень хранения и аналитики больших данных с поддержкой ACID-транзакций. Читайте далее про переход от ночных ETL-пакетов с Informatica к быстрому обновлению данных в Amazon S3 на конвейере Spark и Kafka. Возможности...

Как работают пользовательские функции в Apache Hive

В прошлый раз мы говорили про виды таблиц для быстрой работы с Big Data в Apache Hive. Сегодня поговорим про создание пользовательских функций и их применение в Hive. Читайте далее про особенности создания и применения UDF для работы с Big Data в распределенной платформе Apache Hive. Что такое пользовательские функции...

10 вопросов на знание основ архитектуры СУБД Apache Hive: открытый интерактивный тест для начинающих

Чтобы самостоятельное обучение по Хайв стало еще интереснее, сегодня мы предлагаем вам простой тест по основам архитектуры распределенной SQL-платформы Apache Hive, включая элементы, из которых она состоит и их структуру.   Тест по основам архитектуры Hive для новичков Для начинающих самостоятельное обучение по Apache Hive мы предлагаем простой интерактивный тест...

Что под капотом ретаргетинга: прогнозирование намерений пользователя с Apache Hadoop и Spark Structured Streaming на сервисах Amazon

Мы уже рассказывали о возможностях ретаргетинга и использовании Apache Spark Structured Streaming для реализации этого рекламного подхода на примере Outbrain. Такое применение технологий Big Data сегодня считается довольно распространенным. Чтобы понять, как это работает на практике, рассмотрим кейс маркетинговой ИТ-компании MIQ, которая запускает Spark-приложения на платформе Qubole и сервисах Amazon,...

Какие бывают таблицы для быстрой работы с Big Data в Hive

В прошлой статье мы рассматривали архитектуру Apache Hive и ее основные элементы. Сегодня поговорим про основные виды таблиц в Hive. Также подробно рассмотрим создание этих таблиц на практических примерах. Читайте далее про виды таблиц в Hive и их особенности. 2 основных вида таблиц для быстрой работы с большими данными в...

Архитектура СУБД Apache Hive: основы Big Data для начинающих

В этой статье мы поговорим про структуру системы управления базами данных (СУБД) Apache Hive. Также рассмотрим, какие базовые компоненты входят в структуру известной SQL-подобной СУБД, входящей в экосистему Hadoop. Читайте далее про основные компоненты структуры Apache Hive, которые делают эту СУБД весьма удобным и мощным средством хранения и обработки больших...

Как спроектировать идеальный Big Data Pipeline: 5 главных качеств конвейера обработки больших данных с примерами

В этой статье разберем ключевые характеристики идеального конвейера обработки больших данных. Читайте далее, чем отличается Big Data Pipeline, а также какие приемы и технологии помогут инженеру данных спроектировать и реализовать его наиболее эффективным образом. В качестве практического примера рассмотрим кейс британской компании кибербезопасности Panaseer, которой удалось в 10 раз сократить...

Как построить ML-pipeline на Qlik Replicate, Apache Kafka и других технологиях Big Data: архитектура real-time аналитики больших данных

Сегодня поговорим про ETL-процессы в мире Big Data на примере построения непрерывного конвейера поставки больших данных о транзакциях для сервисов машинного обучения. Читайте далее, из чего состоит типичная архитектура такой системы на базе Apache Kafka, Spark, HBase и Hive, а также почему большинство ETL-инструментов не подходят для потоковой передачи событий...

5 этапов продуктивной миграции в облачный Hadoop на базе Google Dataproc

Сегодня поговорим про особенности перехода с локального Hadoop-кластера в облачное SaaS-решение от Google – платформу Dataproc. Читайте далее, какие 5 шагов нужно сделать, чтобы быстро развернуть и эффективно использовать облачную инфраструктуру для запуска заданий Apache Hadoop и Spark в системах хранения и обработки больших данных (Big Data). Шаги переноса Data...

Как работает облачная аналитика больших данных на Apache Hadoop и Spark в Dataproc

В этой статье рассмотрим архитектуру и принципы работы системы хранения, аналитической обработки и визуализации больших данных на базе компонентов Hadoop, таких как Apache Spark, Hive, Tez, Ranger и Knox, развернутых в облачном Google-сервисе Dataproc. Читайте далее, как подключить к этим Big Data фреймворкам BI-инструменты Tableau и Looker, а также что обеспечивает...

Что не так с Delta Lake на Apache Spark: 7 основных проблем и их решения

При всех своих достоинствах Delta Lake, включая коммерческую реализацию этой Big Data технологии от Databricks, оно обладает рядом особенностей, которые могут расцениваться как недостатки. Сегодня мы рассмотрим, чего не стоит ожидать от этого быстрого облачного хранилище для больших данных на Apache Spark и как можно обойти эти ограничения. Читайте далее,...

Быстрая аналитика больших данных в Data Lake на Apache Kudu с Kafka и Spark

В продолжение темы про совместное использование Apache Kudu с другими технологиями Big Data, сегодня рассмотрим, как эта NoSQL-СУБД работает вместе с Kafka, Spark и Cloudera Impala для построения озера данных (Data Lake) для быстрой аналитики больших данных в режиме реального времени. Также читайте в нашей статье про особенности интеграции Apache...

Синергия Apache Kudu с HDFS и Impala для быстрой аналитики Big Data в Hadoop

В этой статье продолжим разговор про Apache Kudu и рассмотрим, как эта NoSQL-СУБД используется с Hadoop и Cloudera Impala, чем она полезна в организации озера данных (Data Lake) и почему Куду не заменяет, а успешно дополняет HDFS и HBase для эффективной работы с большими данными (Big Data). Apache Kudu в...

Зачем вам Apache Bigtop или как собрать свой Hadoop для Big Data

Сегодня поговорим про еще один open-source проект от Apache Software Foundation – Bigtop, который позволяет собрать и протестировать собственный дистрибутив Hadoop или другого Big Data фреймворка, например, Greenplum. Читайте в нашей статье, что такое Apache Bigtop, как работает этот инструмент, какие компоненты он включает и где используется на практике. Что...