Управление метаданными в корпоративной платформе данных

Зачем нужен каталог метаданных и как он работает: построение платформы данных и управление метаданными по DAMA DMBOK. Unity Catalog и другие решения для учета источников данных и непрерывного обеспечения их актуальности. Управление метаданными по DMBOK Методологически создание и внедрение платформ данных основано на положениях DAMA DMBOK – своде знаний по...

Под капотом PREWHERE в ClickHouse: сравниваем планы запросов

Как устроена оптимизация PREWHERE для сокращения объема сканируемых данных в ClickHouse: разбираемся с деталями реализации и смотрим планы выполнения SQL-запросов. Как устроена оптимизация PREWHERE в ClickHouse Недавно мы писали, как оптимизация PREWHERE позволяет сократить объем сканируемых данных и повысить скорость выполнения SQL-запроса в ClickHouse. Сегодня рассмотрим техническую реализацию этого оператора...

Проблемы ручной фиксации смещения потребителей в Kafka и их решения с KIP-1094

Когда и зачем фиксировать смещение потребителей Kafka вручную, с какими проблемами можно при этом столкнуться и как улучшение KIP-1094 обеспечивает целостность потоков данных в распределенных средах. Когда и зачем фиксировать смещения потребителей в Kafka вручную Недавно мы разбирали, как выполняется автоматическая фиксация смещений потребителей в Apache Kafka. Она выполняется периодически....

Зачем нужна оптимизация PREWHERE в ClickHouse

Как ускорить выполнение SQL-запроса в ClickHouse, сократив объем сканируемых данных с помощью оператора PREWHERE: практический пример простой, но эффективной оптимизации. Как работает оператор PREWHERE в ClickHouse ClickHouse имеет ряд многоуровневых оптимизаций, благодаря которым позволяет анализировать огромные объемы данных почти в реальном времени. Одной из таких оптимизаций является PREWHERE, которая сокращает...

Не только векторные БД: графовый RAG для LLM и агентского ИИ

Что не так с векторным RAG: обогащение LLM данными из графовых баз с помощью MCP-протокола, вычислительных движков и коннекторов для построения ML-системы агентского ИИ. Что такое графовый RAG для LLM и ИИ-агентов Большие языковые модели (LLM, Large Language Model) и основанные на них системы агентского ИИ активно используют векторные базы...

Выбор колоночной OLAP-СУБД: ClickHouse или StarRocks

Что общего у ClickHouse и StarRocks, чем они отличаются, и что выбирать для аналитики больших данных в реальном времени: сравнение колоночных OLAP-СУБД с векторным движком. Чем похожи ClickHouse и StarRocks: 7 главных сходств Хотя ClickHouse сегодня считается одной из наиболее популярных СУБД для аналитики больших данных в реальном времени с...

StarRocks vs Trino: что и когда выбирать

Что общего у StarRocks с Trino, чем они отличаются, когда и что выбирать для практического использования: сравниваем движки для быстрой аналитики больших данных из Data Lake. Чем похожи StarRocks и Trino Вчера мы разбирали, что такое StarRocks, как устроена и где пригодится эта высокопроизводительная аналитическая база данных с открытым исходным...

Не только Clickhouse: StarRocks для аналитики больших данных в реальном времени

Вместо Trino и ClickHouse: что такое StarRocks и как оно устроено, архитектура и принципы работы, сценарии использования и место в корпоративной архитектуре данных. Архитектура и принципы работы StarRocks Хотя ClickHouse сегодня считается одним из наиболее популярных колоночных хранилищ для аналитики больших объемов данных в реальном времени, это не единственный представитель...

Apache AirFlow 3.0: главные новости

22 апреля 2025 вышел долгожданный крупный релиз Apache Airflow. Знакомимся с главными новинками версии 3.0: изменения архитектуры и пользовательского интерфейса для повышения устойчивости и безопасности фреймворка. Еще раз про версионирование DAG в Apache AirFlow 3.0 Недавно мы писали про бета-релиз Apache AirFlow 3.0. Теперь мажорная версия вышла официально и доступна...

Водяные знаки в заданиях Flink для потоковой обработки данных из Kafka

Почему задание Flink не обрабатывает потоковые данные из топика Kafka и при чем здесь водяные знаки: причины потери данных или растущей задержки вычислений и способы их решения. Почему задание Flink не обрабатывает потоковые данные и при чем здесь водяные знаки? Рассмотрим простой потоковый конвейер на Apache Flink и Kafka: задание...