Параллельное выполнение задач в DAG Apache AirFlow: практический пример

Сегодня на практическом примере посмотрим, как запускать в DAG Apache AirFlow параллельное исполнение нескольких задач, применим пару лучших практик реализации ETL-конвейера для работы с PostgreSQL, а также разберем неоднозначности программного добавления соединений с внешними системами. Постановка задачи Предположим, необходимо получить аналитику по продажам товаров интернет-магазина, выгрузив данные из PostgreSQL в...

Возможности Apache Flink для разработчика: 3 API фреймворка

Какие возможности Apache Flink предоставляет разработчику и как их использовать: краткий обзор существующих API и потоковых примитивов. Потоковые примитивы и низкоуровневый API Будучи популярным фреймворком для stateful-вычислений над неограниченными и ограниченными потоками данных, Apache Flink предоставляет несколько API на разных уровнях абстракции и предлагает специальные библиотеки для различных сценариев. На...

Как повысить надежность кластера Apache Kafka: сбои публикации и стратегии их устранения

Какие меры принять администратору кластера Apache Kafka, чтобы повысить надежность потоковой экосистемы, использующей эту распределенную платформу как средство интеграции различных приложений. Сбои в потоковой экосистеме и способы их устранения Хотя Apache Kafka считается высоконадежной системой благодаря множеству встроенных механизмов отказоустойчивости, таким как репликация и перевыборы лидера. Впрочем, это не исключает...

Под капотом задания Apache Flink: 3 этапа преобразования

Как планируются и исполняются задания Apache Flink: от пользовательского Java-кода до физического исполнения, а также отслеживание статуса задания в JobManager. Подробности преобразований с примерами кода. 3 этапа преобразования задания Apache Flink Задание Apache Flink проходит несколько этапов перед своим физическим выполнением: сперва пользовательский код преобразуется в потоковый граф (Stream Graph);...

Все успешно: файл _SUCCESS в рабочих процессах Apache Spark

Когда и зачем Spark-приложение создает файл _SUCCESS, почему в нем нет данных, как его использовать, можно ли обойтись без него и как это сделать. Пример запуска PySpark-приложения в Google Colab. Когда и зачем Spark-приложение создает файл _SUCCESS В Apache Spark при выполнении операций записи с использованием таких методов, как saveAsTextFile(),...

Apache Kafka vs Streams и Pub/Sub в Redis

Как key-value СУБД Redis может работать с потоковыми данными и чем Pub/Sub и Streams отличаются от Apache Kafka. Сравнение и рекомендации по использованию. Потоковое сохранение данных Redis Будучи очень быстрым key-value хранилищем, NoSQL-СУБД Redis часто используется в качестве слоя кэширования для разгрузки основной базы данных. В отличие от многих других...

SQL-запросы к Clickhouse в онлайн-песочнице: практический пример

Насколько быстро ClickHouse выполняет SQL-запросы: тестирование СУБД в открытой онлайн-песочнице. Примеры запросов и время их выполнения. Работа с онлайн-песочницей Clickhouse: выполнение SQL-запросов Будучи реляционной аналитической СУБД, ClickHouse позволяет обрабатывать гигабайты данных в реальном времени. Архитектурные особенности, благодаря которым реализуется такая скорость, мы недавно разбирали здесь. Чтобы оценить это на практике,...

Greenplum vs Clickhouse: сравнение аналитических СУБД для Big Data

Сходства и различия популярных реляционных аналитических СУБД с открытым исходным кодом: что общего у Greenplum с ClickHouse, чем они отличаются, что и когда выбирать. Greenplum и Clickhouse: обзор возможностей для аналитики больших данных Обе СУБД являются реляционными и относятся к классу OLAP-систем, т.е. ориентированы на аналитические варианты использования, т.е. чтение...

Долгожданный релиз Apache NiFi 2.0: что нового?

Недавно мы писали об анонсированных новинках Apache NiFi 2.0. Наконец, 25 ноября 2023 года этот долгожданный мажорный релиз опубликован. Знакомимся с главными новостями версии 2.0, в которой более 900 обновлений, включая новые функции, улучшения и исправления ошибок. ТОП-7 новинок в Apache NiFi 2.0 Прежде всего, важной новинкой NiFi 2.0 является...

Кластерный анализ графов с медоидами: алгоритм k-medoids

Что такое алгоритм k-medoids, чем он отличается от k-means и как этот метод кластеризации применяется для анализа графов: принципы и инструменты. Что такое медоид и как устроен алгоритм кластеризации k-medoids Кластеризация — это метод машинного обучения для поиска кластеров или сообществ в наборе данных. Цель в том, чтобы найти кластеры,...

Поиск по сайту