От банков до Газпрома: 4 крупных успеха Arenadata – интересные кейсы за последнюю пару лет

Сегодня мы поговорим про продукты компании Arenadata – отечественного разработчика дистрибутива Apache Hadoop (ADH), массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB) и других Big Data платформ. Читайте в нашей статье, где внедрены эти решения и какую пользу они уже успели принести бизнесу. Облака и банк: 3...

5 достоинств и 2 недостатка Data Vault для КХД и архитектора Big Data

В этой статье мы рассмотрим основные плюсы и минусы Data Vault – популярного подхода к моделированию сущностей при проектировании корпоративных хранилищ данных (КХД). Читайте сегодня, почему промежуточные базы перед витринами данных упрощают ETL-процессы, за счет чего обеспечивается отсутствие избыточности и как много таблиц могут усложнить жизнь архитектора Big Data. Чем...

ETL по Data Vault: решаем проблемы загрузки данных в КХД с помощью Big Data

Продолжая разговор про проектирование корпоративных хранилищ данных с использованием подхода Data Vault, сегодня мы рассмотрим, как эта модель влияет на дизайн ETL-процессов и их реализацию. Читайте в нашей статье про загрузку данных в КХД по модели Data Vault и проблемы, которые могут при этом возникнуть, а также способы их решения...

Что такое Data Vault: моделирование КХД для архитектора Big Data

Вчера мы рассмотрели, что такое Data Vault, почему возникла эта модель и чем она полезна при проектировании архитектуры корпоративных хранилищ данных (КХД) и озер данных (Data Lake). Сегодня разберем ключевые понятия Data Vault и поговорим про возможности Data Vault 2.0 для области больших данных (Big Data). Ключевые понятия Data Vault...

Как спроектировать КХД: 4 метода моделирования данных для архитектора Big Data

Сегодня мы поговорим о проектировании архитектуры корпоративных хранилищ данных (КХД) и рассмотрим, какие методы и инструменты используются для моделирования структуры DWH и динамики ETL-процессов. В этой статье про основы Data Modelling разберем, что такое OLAP и OLTP, почему 3-я нормальная форма стала стандартом в SQL-СУБД, чем схемы звезды отличается от...

Современное КХД в облаках: гибриды, лямбда, MPP и прочая Big Data

В продолжение темы про корпоративные хранилища данных, сегодня мы рассмотрим облачные варианты Data Warehouse с учетом тренда на расширенную аналитику Big Data на базе машинного обучения. Читайте в нашей статье про синергию классической LSA-архитектуры локального КХД с Лямбда-подходом, MPP-СУБД, а также Apache Hadoop, Spark, Hive и другими технологиями больших данных....

Не Hadoop’ом единым: что такое КХД и как его связать с Big Data

В этой статье мы расскажем, что такое корпоративное хранилище данных, зачем оно нужно и как устроено. Еще рассмотрим основные достоинства и недостатки Data Warehouse, а также чем оно отличается от озера данных (Data Lake) и как традиционная архитектура КХД может использоваться при работе с большими данными (Big Data). Где хранить...

Как выбрать курсы по Spark: 4 ключевых аспекта, на что обратить внимание

Выбирая курсы по Spark, Hadoop, Kafka и другим технологиям больших данных, легко запутаться во многочисленных предложениях от различных учебных центров и платформах онлайн-обучения. Сегодня мы расскажем, что должна включать программа курса по Big Data, чтобы результат обучения оправдал ваши ожидания и даже превзошел их. 4 главных свойства эффективного курса по...

От администрирования до разработки Big Data систем: 7 главных проблем Apache Spark

Обычно курсы по Spark подробно рассказывают, чем хорош этот Big Data фреймворк для распределённой пакетной и потоковой обработки неструктурированных и слабоструктурированных данных. Но, чтобы обучение Apache Spark было максимально полезным, стоит знать и о недостатках этого многофункционального инструмента обработки больших данных. Сегодня мы рассмотрим некоторые проблемы, которые возникают при практическом...

Хайп вокруг Big Data с Machine Learning: прогнозы Gartner и российские реалии

Сегодня мы поговорим, что такое Hype Cycle от самого известного аналитического агентства Gartner и как будут развиваться наиболее популярные сегодня ИТ-тренды в области больших данных (Big Data), управления данными (Data Management), машинного обучения (Machine Learning) и искусственного интеллекта (Artificial Intelligence). Что такое цикл зрелости технологий – Hype Cycle от Gartner...

Поиск по сайту