Зачем вам Feature Store или что не так с микросервисами в ML-системах

Сегодня рассмотрим, когда микросервисные архитектуры не подходят для систем машинного обучения и какие технологии Big Data следует использовать в этом случае. В этой статье мы расскажем, что такое Feature Store, как это хранилище признаков для моделей Machine Learning повышает эффективность MLOps-процессов и сокращает цикл разработки ML-систем, а также при чем...

5 лучших практик работы с кэшем в Apache Spark SQL

Продолжая рассказывать про курсы Apache Spark для разработчиков на практических примерах, сегодня рассмотрим, как кэширование данных позволяет оптимизировать распределенные вычисления в этом Big Data фреймворке. Читайте далее, как ускорить выполнение запросов в Spark SQL, чем отличаются функции cache() и persist(), из чего состоит план запроса и каковы альтернативы кэшированию данных...

Как опередить спрос на модные новинки с облачными технологиями Big Data: кейс компании Boden по Apache Kafka и Snowflake

Интерактивная аналитика больших данных - одно из самых востребованных и коммерциализированных приложений для технологий Big Data. В этой статье мы рассмотрим, как крупный британский ритейлер запустил цифровую трансформацию своей ИТ-архитектуры, уходя от традиционного DWH с пакетной обработкой к событийно-стриминговой облачной платформе на базе Apache Kafka и Snowflake. Зачем модному ритейлеру...

Как очистить большие данные для Apache Spark SQL: краткий обзор Cleanframes

Поскольку курсы по Apache Spark нужны не только разработчикам распределенных приложений, но и аналитикам больших данных с дата-инженерами, сегодня мы рассмотрим, какие средства этого фреймворка позволяют выполнять очистку данных и повышать их качество. Читайте далее, что такое Cleanframes в Spark SQL, чем полезна эта библиотека и каковы ее ограничения. Apache...

Как устроен конвейер аналитики больших данных на Apache Kafka и Druid в Netflix

В этой статье разберем, что такое прикладная аналитика больших данных на примере практического использования Apache Kafka и Druid в Netflix для обработки и визуализации метрик пользовательского поведения. Читайте далее, зачем самой популярной стриминговой компании отслеживать показатели клиентских устройств и как это реализуется с помощью Apache Druid, Kafka и других технологий...

Зачем вам UNION вместо JOIN в Apache Druid и семплирование больших данных в Spark Streaming: пример потоковой аналитики Big Data

Недавно мы рассказывали про систему онлайн-аналитики Big Data на базе Apache Kafka, Spark Streaming и Druid для площадки рекламных ссылок Outbrain, а затем на этом же кейсе рассматривали, зачем нужен Graceful shutdown в потоковой обработке больших данных. Сегодня в рамках этого примера разберем, как снизить нагрузку при потоковой передаче множества...

5 этапов продуктивной миграции в облачный Hadoop на базе Google Dataproc

Сегодня поговорим про особенности перехода с локального Hadoop-кластера в облачное SaaS-решение от Google – платформу Dataproc. Читайте далее, какие 5 шагов нужно сделать, чтобы быстро развернуть и эффективно использовать облачную инфраструктуру для запуска заданий Apache Hadoop и Spark в системах хранения и обработки больших данных (Big Data). Шаги переноса Data...

Как работает облачная аналитика больших данных на Apache Hadoop и Spark в Dataproc

В этой статье рассмотрим архитектуру и принципы работы системы хранения, аналитической обработки и визуализации больших данных на базе компонентов Hadoop, таких как Apache Spark, Hive, Tez, Ranger и Knox, развернутых в облачном Google-сервисе Dataproc. Читайте далее, как подключить к этим Big Data фреймворкам BI-инструменты Tableau и Looker, а также что обеспечивает...

Как работает SQL в Apache NiFi: потоковая обработка Big Data с помощью структурированных запросов

Сегодня рассмотрим, как можно фильтровать потоки больших данных в Apache NiFi через типовой механизм SQL-запросов. Читайте далее, чем эта ETL-платформа стриминговой маршрутизации Big Data отличается от других систем, которые используют язык структурированных запросов вне СУБД, какие процессоры позволяют работать с потоковыми файлами (FlowFile) как с таблицами базы данных и при...

Stateful vs Stateless в потоковой обработке Big Data на примере Apache Spark Structured Streaming

Сегодня поговорим про сохранение состояний при потоковой обработке больших данных с помощью Apache Spark и рассмотрим особенности Structured Streaming в новой версии этого популярного Big Data фреймворка. Читайте далее про Stateless и Stateful приложений в реальном времени, управление состояниями, связь DStream с RDD и UI в Spark Structured Streaming. Состояния в...