Вчера мы рассказывали про нововведения в Apache Spark 3.0 и упомянули про улучшения в SparkR. Сегодня рассмотрим, почему в новой версии фреймворка вызов пользовательских функций стал быстрее в 40 раз и какие еще проблемы работы с R были решены в этом релизе. Что не так со SparkR: десериализация и особенности...
Чтобы сделать наши курсы по Spark еще более интересными и добавить в них самые актуальные тренды, сегодня мы расскажем о новом релизе этого Big Data фреймворка. Читайте далее, что нового в Apache Spark 3.0 и почему Spark SQL стал еще лучше. 10 лет в Big Data или немного истории В...
Мы уже рассказывали про основные достоинства и недостатки Apache Airflow, с которыми чаще всего можно столкнуться при практическом использовании этого оркестратора конвейеров обработки больших данных (Big Data). Сегодня рассмотрим некоторые специфические ограничения, характерные для этой open-source платформы и способы решения этих проблем на реальных примерах. Все по плану: 5 особенностей...
В этой статье мы поговорим про возможность нехарактерного использования Apache Kafka: не как распределенной стримминговой платформы или брокера сообщений, а в виде базы данных. Читайте далее, как Apache Kafka дополняет другие СУБД, не заменяя их полностью, почему такой вариант использования возможен в Big Data и когда он не совсем корректен....
При всех своих достоинствах Delta Lake, включая коммерческую реализацию этой Big Data технологии от Databricks, оно обладает рядом особенностей, которые могут расцениваться как недостатки. Сегодня мы рассмотрим, чего не стоит ожидать от этого быстрого облачного хранилище для больших данных на Apache Spark и как можно обойти эти ограничения. Читайте далее,...
В прошлый раз мы говорили о том, как установить PySpark в Google Colab, а также скачали датасет с помощью Kaggle API. Сегодня на примере этого датасета покажем, как применять операции SQL в PySpark в рамках анализа Big Data. Читайте далее про вывод статистической информации, фильтрацию, группировку и агрегирование больших данных...
Чтобы наглядно показать, как аналитика больших данных и машинное обучение помогают быстро решить актуальные бизнес-проблемы, сегодня мы рассмотрим кейс компании Леруа Мерлен. Читайте в нашей статье про нахождение аномалий в сведениях об остатках товара на складах и в магазинах с помощью моделей Machine Learning, а также про прикладное использование Apache...
Недавно мы разбирали особенности интеграции Apache Kudu и Spark. В продолжение этой темы, сегодня поговорим про некоторые особенности выполнения SQL-операций с данными при интеграции этих Big Data фреймворков, а также рассмотрим пример записи данных в мульти-мастерный кластер Куду через Impala с помощью API Data Frame на PySpark. Что приносит Kudu...
Продолжая разбирать production-кейсы реального использования этих технологий Big Data, сегодня поговорим подробнее, каковы плюсы совместного применения Kudu, Spark Streaming, Kafka и Cloudera Impala на примере аналитической платформы для мониторинга событий информационной безопасности банка «Открытие». Также читайте в нашей статье про возможности этих технологий в контексте машинного обучения (Machine Learning), в...
Сегодня мы рассмотрим практический кейс использования Apache Kudu с Kafka, Storm и Cloudera Impala в крупной китайской корпорации, которая производит смартфоны. На базе этих Big Data технологий компания Xiaomi построила собственную платформу для BI-аналитики больших данных и генерации отчетности в реальном времени. История Kudu-проекта в Xiaomi Корпорация Xiaomi начала использовать...