Неконсистентность данных в распределенной системе: Apache Kafka и проблема двойной записи

Проклятье CAP-теоремы: проблема целостности данных в распределенной системе и варианты ее решения. 3 шаблона проектирования микросервисной EDA-архитектуры на Apache Kafka: transactional outbox, Event Sourcing и listen to yourself. Что такое проблема двойной записи в распределенных гетерогенных системах Согласно CAP-теореме, распределенная система в любой момент времени обеспечивает выполнение только 2-х требований...

Изоляция транзакций в Apache Kafka при потреблении сообщений

Как Apache Kafka реализует требование к изоляции потребления сообщений, опубликованных транзакционно, и где это настроить в клиентских API, зачем отслеживать LSO, для чего прерывать транзакцию, и какими методами это обеспечивается в библиотеке confluent_kafka. Транзакционое потребление: изоляция чтения сообщений в Apache Kafka При том, что Apache Kafka не является базой данных,...

Транзакции в Apache Kafka: атомарность публикации сообщений

Как Apache Kafka реализует требование к атомарности транзакций с помощью координатора и журнала транзакций: принцип Atomic в ACID и его иллюстрация на UML-диаграмме последовательности публикации сообщений в раздел топика. Транзакционная публикация сообщений в Apache Kafka Хотя Apache Kafka не является базой данных, эта платформа потоковой передачи событий все же хранит...

Разделять ли топик Apache Kafka: 5 главных соображений

Почему раздел называется единицей параллелизма и как определить оптимальное число разделов в топике Apache Kafka в зависимости от количества потребителей и вариативности их поведения, разницы пропускной способности публикации и потребления сообщений, семантики партиционирования, толерантности к упорядоченности событий и ресурсных возможностей узла кластера. Что учитывать при разделении топика Apache Kafka Хотя...

Проектирование raw-слоя DWH для последующего преобразования в Data Vault

Как определить структуру Raw-слоя корпоративного хранилища данных: пример проектирования и DDL-скрипт для кейса электронной коммерции, выбор компонентов решения для архитектуры данных. Постановка задачи: анализ систем-источников Сегодня корпоративные хранилища данных (DWH, Data Warehouse) обычно реализуются в виде нескольких баз данных, связанных ETL-процессами. Причем каждая из этих гомогенных или гетерогенных, т.е. на...

3 главных проблемы проектирования современной архитектуры данных

От оркестрации и синхронизации конвейеров обработки данных до управления хранилищами, включая хранение состояний для stateful-приложений: сложности проектирования архитектуры потоковой обработки событий и способы их решения. Основные сложности проектирования современной архитектуры данных Из-за принципиальных отличий потоковой парадигмы обработки данных от пакетной, что разбиралось здесь, задача проектирования дата-конвейеров сильно усложняется, т.к. редко...

4 модели потоковой парадигмы обработки данных

Чем пакетная парадигма обработки данных отличается от пакетной и как она реализуется на практике: принципы работы и воплощение в Big Data на примере Apache Spark, Kafka и Flink. Еще раз о разнице потоковой и пакетной парадигмы обработки данных Пакетная обработка и потоковая обработка — это две разные парадигмы обработки данных....

Как извлечь данные из реляционной базы: основные паттерны

Большинство ETL-конвейеров извлекают данные из реляционных баз в пакетном или микропакетном режиме. Читайте далее, по каким шаблонам реализовать операции извлечения. Моментальные снимки: периодическая выгрузка данных из исходных таблиц Полная периодическая выгрузка данных из одной или нескольких таблиц – это, пожалуй, самый простой метод извлечения изменяемых данных. По своей сути результат полной...

Проектирование хранилища данных с методологией Data Vault в архитектуре Lakehouse

Преимущества методологии Data Vault для проектирования архитектуры данных Lakehouse, а также лучшие практики ее использования с максимальной эффективностью для корпоративного хранилища. Принципы методологии Data Vault и их применение к проектированию DWH Существует множество различных методологий проектирования данных, которые можно использовать при разработке аналитической системы, например, модели звезды и снежинки, подходы...

Отметки времени событий для безопасности архитектуры данных Lakehouse

Как отметки времени о событиях в архитектуре данных Lakehouse позволяют обеспечить безопасность Delta Lake: примеры извлечения и преобразования, а также лучшие практики. Почему отметки времени в логах системных событий так важны для архитектуры больших данных Архитектура Lakehouse построена на открытых стандартах и ​​API, которые позволяют сочетать ACID-транзакции и управление данными...

Поиск по сайту