Как передать изменения данных из транзакционной базы в аналитическую без дублей и задержек: CDC-ETL из PostgreSQL в ClickHouse с PeerDB. CDC для ClickHouse с PeerDB и ClickPipes Возможности Clickhouse позволяют построить на нем корпоративное хранилище данных целиком или реализовать отдельный слой, например, для денормализованных витрин. Также совместное использование транзакционных и...
Что такое Trino Gateway, зачем он нужен и как работает: для чего делить один большой кластер Trino на несколько маленьких и как к ним обращаться без изменений на стороне клиентов. Проблемы бесконечного масштабирования кластера Благодаря горизонтальному масштабированию, о котором мы говорили вчера, кластер Trino можно расширять, добавляя новые рабочие узлы....
Почему можно программировать на Python для разработки JVM-приложений: как Java-фреймворки с Python API, такие как Apache Spark и Flink, транслируют Python-код, организуя межпроцессное взаимодействие. Способы трансляции Python-кода для исполнения в JVM Большинство фреймворков для разработки высоконагруженных приложений написаны на Java. Например, Apache Spark или Flink. При этом они предоставляют Python...
Зачем использовать ClickHouse для аналитики в реальном времени с агентами ИИ и как это сделать: современные вызовы внедрения LLM. Как реализовать ML-систему агентского ИИ с ClickHouse Продолжим разговор про агентский ИИ на основе LLM, когда ML-система не просто реагирует на запросы пользователя, а работает автономно, интеллектуально решая задачи без прямого...
Чем хорош агентский ИИ, какие риски и проблемы с ним связаны, и как их избежать: технические и организационные меры внедрения ML-систем в реальный бизнес. Что сдерживает внедрение агентского ИИ Мы уже писали об агентском ИИ, когда ML-система не просто реагирует на запросы пользователя, а работает автономно, интеллектуально решая задачи без...
Особенности хранения и аналитической обработки JSON-документов в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL: объяснение бенчмаркингового теста. JSON в ClickHouse Недавно мы писали про бенчмаркинговое сравнение хранения и обработки JSON-данных в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL. В этом тесте, проведенном самими разработчиками ClickHouse, эта СУБД показала максимальную эффективность, которая обоснована...
Почему ClickHouse требует меньше места для хранения JSON-документов и быстрее выполняет аналитические запросы к ним по сравнению с MongoDB, Elasticsearch, DuckDB и PostgreSQL: бенчмаркинговый тест от разработчиков колоночной СУБД. Как Clickhouse делает быстрее агрегации в JSON-данных Хотя бенчмаркинговые тесты от вендоров редко бывают объективными, просматривать их довольно интересно. Недавно мне...
Почему Trino не заменит Flink, Spark и Airflow: границы применимости MPP-движка распределенного выполнения SQL-запросов к реляционным и нереляционным источникам данных. Почему Trino не заменит Flink, Spark и Airflow Хотя Trino отлично подходит для быстрой ad-hoc аналитики, позволяя SQL-запросами в реальном времени обращаться к различным базам данных, включая нереляционные хранилища и...
Почему в хранилище и витрину данных могут попасть дубли, чем это чревато и какие встроенные механизмы дедупликации есть в ClickHouse. Примеры OPTIMIZE-запросов и работы с движком ReplacingMergeTree. Причины дублирования данных и их последствия Дублирование данных в хранилищах и в витринах – довольно частая проблема в дата-инженерии. Это приводит к росту...
Чем Apache Beam отличается от Apache Flink, что и когда выбирать, зачем их совмещать для реализации сложных конвейеров обработки больших объемов данных с помощью распределенных stateful-приложений, и как это работает. Сходства и отличия Apache Beam и Flink Хотя Apache Beam является унифицированной моделью определения пакетных и потоковых конвейеров параллельной обработки данных,...