4 стратегии мультирегионального развертывания Apache Kafka

Завершая цикл статей про мультирегиональную репликацию кластеров Apache Kafka, сегодня поговорим про стратегии развертывания топологий, предлагаемых компанией Confluent. Принципы архитектуры, сравнение, сценарии, критерии выбора. Критерии выбора топологии репликации кластера Apache Kafka Для повышения надежности и производительность потоковой обработки данных с использованием Apache Kafka кластера этой платформы рекомендуется располагать в разных...

4 способа реализации мультирегиональной репликации Apache Kafka

Продолжая разговор про межрегиональную репликацию Apache Kafka, сегодня рассмотрим 4 способа ее реализации: мультирегиональный кластер, MirrorMaker 2, Cluster Linking в Confluent Server и Confluent Replicator. Чем георепликация Kafka с MirrorMaker 2 отличается от решений Confluent и что выбирать для различных сценариев. Мультирегиональный кластер Confluent Геораспределенная репликация реплицирует данные по кластерам...

2 решения Confluent для мультирегиональной георепликации Apache Kafka

Недавно мы писали про мультирегиональную репликацию Apache Kafka. Сегодня рассмотрим, как выполнить геораспределенную репликацию с помощью Cluster Linking в Confluent Server и Kafka Connect с Confluent Replicator. Cluster Linking для Apache Kafka Связанные кластеры представляют собой 2 или более кластера в разных географических регионах. В отличие от топологии растянутого кластера,...

Мультирегиональная репликация Apache Kafka: кластерные топологии

Какую топологию может иметь кластер Apache Kafka при межрегиональной репликации по нескольким ЦОД и как это реализовать. Чем брокеры-наблюдатели отличаются от подписчиков в Confluent Server и при чем здесь конфигурация подтверждений acks в приложении-продюсере. Принципы репликации данных в Apache Kafka Будучи средством интеграции информационных систем в режиме реального времени, Apache...

Stateful-операторы в Apache Spark Structured Streaming

Как выполнение нескольких stateful-операторов в одном потоке снижает стоимость обработки данных: возможности и ограничения Spark Structured Streaming. Про водяные знаки и состояния в потоковой передаче событий. Stateful-операторы и водяные знаки в потоковой обработке данных Благодаря распределенной обработке микропакетов в памяти Spark Structured Streaming позволяет обрабатывать огромные объемы данных очень быстро....

Движки таблиц в ClickHouse: что и когда выбирать

Одной из причин быстрой работы ClickHouse являются движки таблиц, оптимизированные на конкретные операции с данными. Сегодня рассмотрим, чем они отличаются и какой из них выбирать для разных сценариев. Движки БД ClickHouse Прежде чем разбираться с движками таблиц ClickHouse, вспомним само назначение этого термина. Движок БД или механизм хранения отвечает за...

Сколько стоит инфраструктура Apache Kafka: 2 главные статьи затрат

Какие инфраструктурные компоненты самые дорогие в эксплуатации популярной платформы потоковой передачи сообщений и как снизить затраты на сетевые ресурсы и хранилища данных при использовании Apache Kafka. TCO для Apache Kafka: что учитывать в расчете затрат Поскольку Apache Kafka используется для интеграции информационных систем в режиме реального времени, она становится критически...

3 вида представлений в ClickHouse

Чем материализованное представление в ClickHouse отличается от обычного, зачем нужны LIVE-представления и как их использовать. Примеры SQL-запросов с VIEW для самой популярной колоночной аналитической СУБД. Представления vs словари в ClickHouse Поскольку ClickHouse, как типовая колоночная СУБД, используется для аналитической обработки огромных объемов данных в реальном времени, вопрос ускорения вычислений для...

Как извлечь данные из реляционной базы: основные паттерны

Большинство ETL-конвейеров извлекают данные из реляционных баз в пакетном или микропакетном режиме. Читайте далее, по каким шаблонам реализовать операции извлечения. Моментальные снимки: периодическая выгрузка данных из исходных таблиц Полная периодическая выгрузка данных из одной или нескольких таблиц – это, пожалуй, самый простой метод извлечения изменяемых данных. По своей сути результат полной...

3 условия соединения многораздельных потоков в Kafka Streams

Почему нельзя просто взять и соединить потоки Kafka Streams с разным числом разделов, и как это все-таки сделать без изменения конфигурации топика. Почему нельзя просто взять и соединить потоки Kafka Streams с разным числом разделов Kafka Streams – это клиентская Java-библиотека для разработки потоковых приложений, которые работают с данными, хранящимися...