Миграция с Apache HBase в TiDB: кейс Pinterest

Хотя Apache HBase обладает массой достоинств, такими как строгая согласованность на уровне строк при больших объемах запросов, гибкая схема, доступ к данным с малой задержкой и интеграция с Hadoop, эта NoSQL-СУБД имеет ряд недостатков: чрезмерная сложность и дороговизна эксплуатации, отсутствие вторичных индексов и ACID-транзакций. Поэтому инженеры фотохостинга Pinterest приняли решение...

Идеальная облачная среда озера данных и DaaS: возможности и риски

Чтобы добавить в наши курсы для ИТ-архитекторов и дата-инженеров еще больше практических примеров, сегодня разберем ключевые требования к современному озеру данных и самые последние тренды в аналитике Big Data. Что такое DaaS, зачем это нужно и каковы риски. 7 преимуществ развертывания Data Lake в облаке При том, что Data Lake...

Абсолютно безопасно: PEM-аутентификация Apache Kafka по REST API

Специально для обучения дата-инженеров и администраторов кластера Apache Kafka, сегодня разберем, как обеспечить безопасность клиента этой распределенной платформы потоковой передачи событий по REST API с помощью возможностей открытого ПО. Что такое PEM-файлы и при чем здесь SSL-сертификаты, а также другие криптографические средства защиты данных: кейс инженеров Expedia Group. Инструменты обеспечения...

Data Mesh + Lakehouse на BigQuery: новая архитектура BigLake от Google

В отличие  от каменных зданий, архитектуры данных постоянно меняются. Сегодня рассмотрим новую архитектурную модель под названием BigLake, выпущенную Google весной 2022 года. Что это такое, как устроено, чем похоже на Lakehouse, озеро данных и Data Mesh, а также чем от них отличается и какую пользу несет для конвейеров аналитики Big...

Лебедь, рак и щука: оптимизация Apache Kafka с теоремами CAP и PACELC

Как найти компромисс между задержкой, пропускной способностью, долговечностью и доступностью в Apache Kafka: проблемы CAP-теоремы и поиски оптимальной стороны PACELC-ромба. Архитектурные ограничения распределенных систем и лучшие практики для настройки конфигурационных параметров для администратора кластера Apache Kafka и дата-инженера потоковых приложений аналитики больших данных. CAP-теорема и распределенные системы На производительность Apache...

Под капотом Lakesoul: как устроено табличное хранилище на Apache Spark

Недавно мы писали про Lakesoul – новое унифицированное решение для хранения потоковых и пакетных таблиц, которое реализует архитектуру данных LakeHouse. Сегодня заглянем под капот этого унифицированного механизма на базе Apache Spark и разберемся с преимуществами его последнего релиза. Как работает LakeSoul: краткий обзор Напомним, LakeSoul от команды DMetaSoul представляет собой...

Выгодно и быстро: потоковая обработка миллионов событий в AWS с Apache Kafka

Сегодня рассмотрим опыт международной компании Emumba, которая специализируется на инженерии и аналитике больших данных. Читайте далее, как выгодно масштабировать конвейер потоковой передачи данных от миллионов устройств интернета вещей, используя Apache Kafka, KStream и Druid в облачной инфраструктуре AWS. Архитектура PoC для потоковой передачи событий от миллионов IoT-устройств Миллионы устройств интернета...

Вместо Iceberg, Hudi и Delta Lake: хранение потоковых и пакетных таблиц с LakeSoul

Сегодня рассмотрим новое унифицированное решение для хранения потоковых и пакетных таблиц, созданное на основе Apache Spark. Что такое Lakesoul, чем это лучше Apache Iceberg, Hudi и Deta Lake. Также разберем, в чем конкурентные преимущества этого табличного хранилища по сравнению с этими форматами открытых таблиц, включая поддержку upsert, управление метаданными и...

Как определить задержку потребителя Apache Kafka в Spark Structured Streaming

Чтобы добавить в наши курсы для дата-инженеров и разработчиков распределенных приложений еще больше практических примеров, сегодня рассмотрим, как написать Python-код для вычисления задержки потребителя Apache Kafka, расширив типовой слушатель StreamingQueryListener, который есть в Java и Scala API библиотеки Spark Structured Streaming, но недоступен в PySpark. Проблема отставания потребителя Apache Kafka...

Apache Kafka vs JMS-брокеры: 3 главных отличия

В этой статье для обучения дата-инженеров и разработчиков распределенных систем сравним Apache Kafka с популярными реализациями Java-стандартов обмена сообщениями, к которым относится Apache ActiveMQ, IBM MQ, Rabbit MQ и другие JMS-брокеры. Чем распределенная платформа потоковой передачи событий отличается от JMS-брокеров и что между ними общего. Что такое JMS-брокер Прежде чем...

Поиск по сайту