Недавно мы писали про Nifi-Python-Api —клиентский SDK, поддерживающий Python для работы с Apache NiFi. Сегодня на примере разработки процессоров более подробно разберем принципы взаимодействия процессов Python с Java, на которой написан Apache NiFi. Принципы работы Python-кода в Java-среде Apache NiFi Поскольку Apache NiFi написан на Java, именно этот язык предпочтителен...
Большинство ETL-конвейеров извлекают данные из реляционных баз в пакетном или микропакетном режиме. Читайте далее, по каким шаблонам реализовать операции извлечения. Моментальные снимки: периодическая выгрузка данных из исходных таблиц Полная периодическая выгрузка данных из одной или нескольких таблиц – это, пожалуй, самый простой метод извлечения изменяемых данных. По своей сути результат полной...
Почему нельзя просто взять и соединить потоки Kafka Streams с разным числом разделов, и как это все-таки сделать без изменения конфигурации топика. Почему нельзя просто взять и соединить потоки Kafka Streams с разным числом разделов Kafka Streams – это клиентская Java-библиотека для разработки потоковых приложений, которые работают с данными, хранящимися...
Как организовать упрощенное и продвинутое управление зависимостями между разными ETL-конвейерами, когда нужна централизованная оркестрация рабочих процессов и чем хороша стандартизация активов данных, отчетов и вычислительных процедур. Лучшие практики проектирования конвейеров для дата-инженера. Проектирование дата-конвейеров с минимальными зависимостями Для многих компаний, выстроивших процессы обработки данных в виде конвейеров, актуальна проблема управления...
Методы отслеживания изменений в реляционных базах данных: столбцы аудиты, триггеры DDL-событий и WAL-журналы. Плюсы и минусы этих подходов, а также примеры реализации в Greenplum и PostgreSQL. 3 подхода к извлечению данных из реляционных баз Извлечение данных из реляционных баз является наиболее распространенной операцией в ETL-процессах. Поэтому при проектировании конвейеров обработки...
В конце декабря принято строить планы на следующие 12 месяцев. Посмотрим, что разработчики Apache Flink обещают реализовать в релизе 2.0, который должен выйти к концу 2024 года. Внедрение многоуровневой системы хранения состояний В Apache Flink 2.0 будет улучшена система управления хранилищем состояния путем перехода к полностью разделенной архитектуре хранения и...
Чем group.instance.id отличается от group.id, зачем нужен member.id, каковы преимущества статического членства в группе потребителей перед динамическим и какие механизмы Kafka обеспечивают ребалансировку клиентских приложений. Еще раз про группы потребителей Apache Kafka Напомним, группы потребителей в Apache Kafka нужны для логического объединения нескольких потребителей с целью повышения надежности потоковой системы....
Какие механизмы и компоненты позволяют Apache Spark планировать задания и эффективно утилизировать ресурсы кластера. Чем статическое разделение ресурсов отличается от динамического, и как настроить планировщик для ускорения вычислений. Планирование заданий в Apache Spark Распределенный характер Apache Spark предполагает наличие инструментов для разделения ресурсов между вычислениями. В режиме кластера каждое приложение...
14 декабря 2023 года вышел очередной релиз Apache AirFlow, который содержит более 20 новых фичей, 60 улучшений и 50 исправлений. Знакомимся с самыми главными для дата-инженера новинками выпуска 2.8. ТОП-10 новинок Apache AirFlow 2.8 Многие обновления в версии 2.8 направлены на расширение возможностей создания DAG, улучшение ведения журналов и исправление...
Сегодня познакомимся с возможностями и ограничениями open-source проект Diskquota, направленного на оптимизацию управления дисковым пространством базы данных Greenplum. Зачем ограничивать использование диска в Greenplum и как это сделать Эффективная утилизация аппаратных ресурсов, в т.ч. жесткого диска – один из факторов, позволяющих ускорить работу любой СУБД, в т.ч. Greenplum. Будучи популярным...