Как рассчитать конверсию контекстной рекламы с помощью Apache Flink SQL: практический пример

Реклама является одним из наиболее крупных сегментов практического применения технологий Big Data. Поэтому сегодня рассмотрим, как Flink SQL реализует потоковую аналитику больших данных в AdTech-кейсах. Разбираем пример JOIN-соединения двух потоков событий - показов и кликов, чтобы вычислить конверсию рекламной кампании средствами Apache Flink или Spark. Потоки Big Data за фасадом...

Потоковая аналитика больших данных в Grafana с Apache Kafka, Flink и SQL Stream Builder

Сегодня рассмотрим, как построить конвейер потоковой обработки событий на Apache Kafka, Flink и SQL Stream Builder с визуализацией результатов в Grafana. Далее вас ждет практический кейс применения технологий Big Data в реальном производстве на примере телеметрии процессов ферментации продуктов в небольшой частной пивоварне. Постановка задачи: бизнес-контекст и используемые технологии В...

Как Byteman упрощает разработку и отладку приложений Apache Flink

В рамках обучения разработчиков распределенных приложений, сегодня рассмотрим, как упростить тестирование и отладку заданий Apache Flink с помощью Byteman. Читайте далее, как внедрить Java-код в JVM, чтобы извлечь нужные сведения о выполнении Flink-приложения на платформе Veverica и ускорить разработку. Разработка и отладка приложений Apache Flink: ежедневные сложности В рассматриваемом примере...

Почему stateful-приложения Apache Flink падают в AWS: RocksDB и IOPS облачных SSD

Продолжая разбирать особенности разработки потоковых приложений Apache Flink, сегодня рассмотрим проблему падения пропускной способности задания из-за встроенного хранилища состояний RocksDB и ее зависимость от производительности дисков. Вас ждет настоящая детективная история о том, как важно заглядывать под капот облачных кластеров и настраивать конфигурации своих stateful-приложений потоковой аналитики больших данных с...

RocksDB как хранилище состояний для stateful-приложений Apache Flink

Мы уже рассказывали, что приложения Kafka Streams используют RocksDB в качестве хранилища состояний. Сегодня рассмотрим, как это key-value NoSQL-СУБД используется для разработки stateful-приложений Apache Flink. Читайте далее о преимуществах и особенностях применения RocksDB для управления состоянием Flink-приложения, а также заблуждениях, связанных с этими фреймворками. 3 бэкенда Apache Flink для хранения...

Кейс потоковой аналитики больших данных с Apache Kafka, Spark (Flink) и BI-системами

Сегодня рассмотрим пример построения системы потоковой аналитики больших данных на базе Apache Kafka, Spark, Flink, NoSQL-СУБД, BI-системой Tableau или визуализацией в Kibana. Читайте далее, кому и зачем исследовать Twitter-посты в реальном времени, как это реализовать технически, визуализировать в наглядных BI-дэшбордах для принятия data-driven решений и при чем здесь Kappa-архитектура. Еще...

Apache Kafka Streams, Spark Streaming, Flink, Storm или Samza: что и когда выбирать для обработки потоков Big Data

Проанализировав сходства и различия пяти самых популярных Big Data фреймворков для распределенных потоковых вычислений (Apache Kafka Streams, Spark Streaming, Flink, Storm и Samza), в этой статье мы сравним их по 10 критериям и отметим, какие именно факторы являются наиболее значимыми для объективного выбора. Сравнительный анализ самых популярных фреймворков потоковой обработки...

Сходства и различия популярных Big Data фреймворков распределенной потоковой обработки: сравниваем Apache Kafka Streams, Spark Streaming, Flink, Storm и Samza

В этой статье мы рассмотрим, чем похожи и чем отличаются 5 самых популярных инструментов распределенной обработки потоков Big Data: Apache Kafka Streams, Spark Streaming, Flink, Storm и Samza, а также поговорим про наиболее значимые факторы выбора между этими программными средствами. 5 общих характеристик распределенных Big Data фреймворков потоковой обработки Прежде...

Apache Flink vs Spark: что и когда выбрать для потоковой обработки Big Data

Flink часто сравнивают с Apache Spark, другим популярным инструментом потоковой обработки данных. Оба этих распределенных отказоустойчивых фреймворка с открытым исходным кодом используются в высоконагруженных Big Data приложениях для анализа данных, хранящихся в кластерах Hadoop [1] и других кластерных системах. В этой статье мы поговорим, чем похожи и чем отличаются Флинк и Спарк, а...

Контакты авторизированного учебного центра
«Школа Больших Данных»
Адрес:
127576, г. Москва, м. Алтуфьево, Илимская ул. 5 корпус 2, офис 319, БЦ «Бизнес-Депо»
Часы работы:
Понедельник - Пятница: 09.00 – 18.00
Остались вопросы?
Звоните нам +7 (495) 414-11-21 или отправьте сообщение через контактную форму. Также вы можете найти ответы на ваши вопросы в нашем сборнике часто задаваемых вопросов.
Оставьте сообщение, и мы перезвоним вам в течение рабочего дня
Я даю свое согласие на обработку персональных данных и соглашаюсь с политикой конфиденциальности.
Или напишите нам в соц.сетях
Поиск по сайту