Тестовые наборы для проверки UDF-функций Flink-приложения

Мы уже писали про тестирование приложений Apache Flink, используя SQL-клиентов, Table API, тестовые наборы операторов и режим локального мини-кластера. Сегодня рассмотрим, как с помощью тестовых наборов тестировать UDF-функции, использующих состояние и таймеры. Модульное тестирование UDF-функций Flink-приложения с помощью тестовых наборов При работе с Apache Flink разработчики часто сталкиваются с проблемами при...

Пагинация SQL-запросов с Apache NiFi

Как с помощью Apache NiFi запрашивать информацию из баз данных постранично. Разбираемся с возможностями и рисками использования процессоров NiFi для пагинации в SQL-запросах. Пагинация баз данных и процессоры Apache NiFi Apache NiFi позволяет запрашивать из баз данных целые таблицы с помощью разбиения на страницы, т.е. пагинации. Напомним, базы данных хранят...

Под капотом Kafka Connect: источники, приемники и коннекторы

Сегодня рассмотрим принципы работы компонента экосистемы Apache Kafka под названием Connect и разберемся, как он устроен. Программная архитектура коннекторов и способы избежать дубликатов при зависании внешней системы-приемника. Архитектура и принципы работы Kafka Connect Apache Kafka не зря считается платформой потоковой передачи, а не просто брокером сообщений. Вокруг нее выстроена целая...

PL/Container для Greenplum: безопасный запуск UDF в Docker-контейнере

Как сделать запуск UDF-функций Python или R на узлах сегмента Greenplum более быстрым и безопасным с помощью Docker-контейнеров и расширения PL/Container. Что такое PL/Container и как это использовать в Greenplum Запуск пользовательского кода для базы данных всегда имеет риск нарушения информационной безопасности. Если речь идет о стеке Big Data, ущерб...

Материализованные представления, CQRS и CDC в микросервисной архитектуре

Как материализованные представления в потоковой базе данных с CDC-подходом и шаблоном CQRS позволяют реализовать масштабируемую и высокопроизводительную систему с микросервисной архитектурой для транзакций и аналитики данных в реальном времени. Разбираемся с паттернами проектирования микросервисов на примере интернет-магазина. Что не так с шаблоном композиция API и другие проблемы микросервисной архитектуры в...

Пара Python-библиотек для дата-инженера: pandas 2.0 и polars

Что появилось нового в мажорном релизе самой популярной Python-библиотеки pandas, чем она похожа на Rust-пакет с Python API polars и в чем между ними разница: тестирование производительности и польза для дата-инженера. Главные новинки pandas 2.0 3 апреля 2023 года вышел долгожданный релиз Python-библиотеки pandas, которая для многих дата-инженеров, аналитиков данных...

5 типов оповещений Apache AirFlow и их мониторинг в Healthchecks.io

В этой статье для обучения дата-инженеров рассмотрим типы оповещений в Apache AirFlow и их отслеживание в сервисе мониторинга cron-заданий Healthchecks.io. Оповещения Apache AirFlow: какие они бывают и зачем их отслеживать Apache AirFlow позволяет создавать сложные конвейеры обработки данных, которые могут выполняться по расписанию, по событию или запускаться вручную. Для повышения...

7 HTTP-процессоров Apache NiFi: в чем между ними разница

Сегодня вспомним, какие процессоры есть в Apache NiFi для работы с HTTP-запросами, зачем их так много, чем они отличаются и в каких случаях использовать каждый из них. Разница между HandleHttpRequest, HandleHttpResponse, GetHTTP, PostHTTP, InvokeHTTP и ListenHTTP. Мы с Тамарой ходим парой: совместное использование процессоров HandleHttpRequest и HandleHttpResponse На первый взгляд...

Как на лету обогатить поток данных Flink с использованием внешнего API

Обогащение потока данных информацией из внешнего API без остановки вычислений: 3 способа реализовать это средствами Apache Flink на примере сервиса геолокации. Зачем обогащать потоковые данные через внешний API и как это сделать для Flink-приложения? Иногда необходимо обогатить потоки данных, т.е. дополнить потоковые данные в реальном времени, т.е. на лету, не...

Разделы и потребители Apache Kafka: практический пример

Чтобы разобраться, как на самом деле работают разделы и потребители Apache Kafka, сегодня рассмотрим небольшой демонстрационный пример, иллюстрирующий потребление сообщений. Пишем Python-скрипты публикации и потребления сообщений из разных разделов топика Kafka с занесением данных в несколько вкладок Google-таблицы. Как сообщения распределяются по разделам топика Kafka Напомним, в Apache Kafka раздел...

Поиск по сайту