От JDBC-подключения до SQL-запросов: пара примеров по Apache Hive, HBase и Spark

В рамках курсов по Apache Hadoop для дата-аналитиков и инженеров данных сегодня рассмотрим пару практических примеров работы с популярным SQL-on-Hadoop инструментом этой экосистемы. Читайте далее, как настроить соединение удаленного сервера Apache Hive к Spark-приложению через JDBC и решить проблему запроса таблицы HBase в Hive вместо повторной репликации данных. Подключение удаленного...

Аналитика слишком больших данных в IoT-инфраструктуре Tesla c Apache Kafka, Alpakka и Akka Streams

Мы уже упоминали, что Apache Kafka не слишком хорошо обрабатывает сообщения чрезмерно большого размера. Сегодня рассмотрим, как эта проблема решается в конвейерах потоковой обработки IoT-инфраструктуры Tesla. Читайте далее про модификацию синтаксического анализатора данных от множества устройств интернета вещей с поиском компромисса между скоростью и надежностью с помощью коннектора Alpakka к...

Динамическое сжатие файлов в Apache Spark: опыт Databricks и не только

При том, что Apache Spark является одной из главных технологий стека Big Data, этот фреймворк не очень хорошо работает с множеством файлов небольшого размера. Поэтому в рамках обучения дата-инженеров и разработчиков распределенных приложений, сегодня рассмотрим, почему это происходит, зачем динамически сжимать файлы в Apache Spark и как это делает платформа...

Как Byteman упрощает разработку и отладку приложений Apache Flink

В рамках обучения разработчиков распределенных приложений, сегодня рассмотрим, как упростить тестирование и отладку заданий Apache Flink с помощью Byteman. Читайте далее, как внедрить Java-код в JVM, чтобы извлечь нужные сведения о выполнении Flink-приложения на платформе Veverica и ускорить разработку. Разработка и отладка приложений Apache Flink: ежедневные сложности В рассматриваемом примере...

Создавайте графы в Apache Airflow с помощью TaskFlow API

В предыдущей статье мы говорили о том, как начать работать с Apache Airflow. Сегодня пойдет речь о новом инструменте, появившемся в Airflow 2, — TaskFlow API. Он обеспечивает кросс-коммуникацию между задачами с помощью обычных функций Python. На примере ETL-конвейера мы объясним, как соорудить DAG на основе TaskFlow API, а также...

Безопасность в режиме онлайн: SIEM-система на базе Apache NiFi от Cloudera

В этой статье для дата-инженеров рассмотрим, что такое Cloudera Flow Management и как это позволяет ускорить аналитику больших данных в кейсах информационной безопасности. Читайте далее о преимуществах SIEM-анализа, преобразования и распределения security-событий с помощью Apache NiFi и его легковесного агента MiNiFi для устройств интернета вещей (Internet Of Things, IoT). Что...

Управление множеством IoT-устройств в Tesla на платформе Apache Kafka: организация топиков и парсинг сообщений

Продолжая разбирать кейс компании Tesla по организации централизованного управления устройствами интернета вещей (Internet of Things, IoT), сегодня разберем, как выполняется обработка сообщений в топиках Apache Kafka с помощью Confluent Schema Registry и Kafka Streams. Читайте далее, как определить потоковый процессор для парсинга данных в CSV и JSON-форматах с использованием схемы...

Аналитика больших данных: цифровая трансформация Renault с Apache Spark и сервисами Google

Сегодня разберем кейс компании Renault по масштабированию своей цифровой платформы и снижению затрат с помощью BigQuery и Apache Spark на Google Dataproc. Цифровизация в автомобильной промышленности: конвейер сбора и аналитики больших данных с производства средствами Google сервисов и снижение затрат на облако в 2 раза через изменение конфигурации Spark SQL....

Тонкости потоковой передачи данных в BigQuery из Apache Kafka и Spark: 5 неочевидных особенностей

В рамках курсов для дата-инженеров и разработчиков распределенных приложений, сегодня рассмотрим пример построения системы потоковой передачи для аналитики больших данных на базе Apache Kafka, Spark и Google BigQuery. Читайте далее про Proof of Concept для конвейера продуктовой аналитики, который обрабатывает 50 миллиардов событий каждый день, и какие важные уроки ИТ-архитектор...

Миллион проблем IoT и Apache Kafka для их решения: опыт Tesla

Являясь лидером отрасли, IoT-устройства Tesla обрабатывают триллионы событий в день, чтобы повысить эффективность своих электроавтомобилей. Однако, такая производительность была получена не сразу: чтобы достичь ее, инженерам компании пришлось решить множество проблем из области интернета вещей (Internet of Things, IoT). Сегодня рассмотрим, как часть из них была решена с помощью Apache...

Поиск по сайту