Сегодня я покажу пример использования реестра схем для Apache Kafka на платформе Upstash, API которого полностью совместим со Schema Registry от Confluent. Пишем продюсер на Python, используя библиотеку confluent_kafka. Еще раз о том, что такое реестр схем Kafka и чем он полезен Реестр схем (Schema Registry) – это модуль Confluent...
Когда журналирование событий может привести к OOM-ошибке, где отслеживать системные метрики приложения Apache Spark, зачем сжимать лог-файлы и как это сделать. Логирование системных метрик в приложении Apache Spark Поскольку фреймворк Apache Spark изначально предназначен для создания высоконагруженных распределенных приложений пакетной и потоковой обработки больших объемов данных, он позволяет отслеживать системные...
Зачем Databricks выпустил Arc, чем это отличается от Splink, и как эти инструменты позволяют решать проблему связывания данных с помощью алгоритмов машинного обучения. Как работает связывание данных Продолжая разговор про качество данных и разрешение сущностей (entity resolution) , сегодня подробно рассмотрим этап связывания записей с использованием логики на основе правил...
Как качество данных связано с разрешением сущностей, чем entity resolution отличается от identity resolution, зачем нужны графы идентичности, как их построить и где использовать. Борьба за качество данных с entity resolution Результаты аналитической обработки данных напрямую зависят от их качества, о ключевых показателях и задачах обеспечения которого мы писали здесь....
Чем пакетная парадигма обработки данных отличается от пакетной и как она реализуется на практике: принципы работы и воплощение в Big Data на примере Apache Spark, Kafka и Flink. Еще раз о разнице потоковой и пакетной парадигмы обработки данных Пакетная обработка и потоковая обработка — это две разные парадигмы обработки данных....
Как работает планировщик заданий в Apache Flink, чем разные реализации Scheduler отличаются друг от друга, и каковы преимущества адаптивных планировщиков. Как Apache Flink планирует выполнение заданий клиентской программы Архитектура Apache Flink, которую мы рассматривали здесь, включает несколько компонентов. Одним из них является планировщик заданий, которые отправляются клиентским приложением в диспетчер...
Что такое Ververica Runtime Assembly, чем GeminiStateBackend лучше RocksDB и еще несколько отличий коммерческого облачного решения от открытого Apache Flink. Что такое Ververica Cloud и при чем здесь Apache Flink Технологии с открытым исходным кодом развиваются намного быстрее при поддержке крупных корпораций. Например, компания Confluent продвигает Apache Kafka, Astronomer –...
Что означает термин backpressure и зачем создавать обратное давление в streaming-системах: разбираемся с методами управления пропускной способностью потоковой передачи событий на примере Apache Kafka, Flink, Spark и NiFi. Что такое обратное давление: backpressure в конвейерах потоковой обработки данных Понять, как работает сложная концепция, проще всего на простых примерах. Это общее...
Завершая цикл статей про мультирегиональную репликацию кластеров Apache Kafka, сегодня поговорим про стратегии развертывания топологий, предлагаемых компанией Confluent. Принципы архитектуры, сравнение, сценарии, критерии выбора. Критерии выбора топологии репликации кластера Apache Kafka Для повышения надежности и производительность потоковой обработки данных с использованием Apache Kafka кластера этой платформы рекомендуется располагать в разных...
Продолжая разговор про межрегиональную репликацию Apache Kafka, сегодня рассмотрим 4 способа ее реализации: мультирегиональный кластер, MirrorMaker 2, Cluster Linking в Confluent Server и Confluent Replicator. Чем георепликация Kafka с MirrorMaker 2 отличается от решений Confluent и что выбирать для различных сценариев. Мультирегиональный кластер Confluent Геораспределенная репликация реплицирует данные по кластерам...