Графовая аналитика в Greenplum и PostgreSQL: обзор расширений и возможностей

Инструменты графовых алгоритмов для аналитики больших данных в PostgreSQL и Greenplum: обзор расширений и возможностей. Знакомимся с Apache AGE и MADlib. Графовая аналитика в PostgreSQL Реляционные СУБД отлично подходят для хранения данных с четкой структурой практически в любой предметной области и предлагают широкие возможности аналитической обработки таких данных. Но иногда реляционная...

Где лучше запустить Flink-приложение: Kubernetes vs AWS EMR

Мы уже писали, как можно развернуть контейнерные приложения Apache Flink для обработки больших объемов данных в реальном времени. В продолжение этой темы сегодня сравним развертывание Flink-заданий в Kubernetes и в кластере AWS EMR. Flink-приложение в Kubernetes: преимущества и недостатки Apache Flink — это мощный фреймворк с открытым исходным кодом для...

Метрики приложений Kafka Streams и средства их мониторинга

Как использовать один и тот же топик Kafka для источника и назначения данных, обеспечивая высокую пропускную способность и низкую задержку приложений Kafka Streams. А также рассмотрим, какие встроенные метрики приложений есть у Kafka Streams, как добавить свои собственные и с помощью каких инструментов их отслеживать в реальном времени. Топики и...

Обработка геоданных в Greenplum с PostGIS

Сегодня познакомимся с расширением PostGIS, которое позволяет PostgreSQL и Greenplum обрабатывать пространственные данные в геолокационных и логистических задачах. Как оно устроено и каковы ограничения его практического использования в MPP-СУБД. Что такое PostGIS и как это работает Как и PostgreSQL, Greenplum поддерживает геометрические типы данных, с помощью которых можно строить статичные...

Бесплатный помощник по настройке приложений Apache Spark от Joom

Чтобы сделать наши курсы для дата-инженеров и разработчиков распределенных приложений еще более полезными, сегодня мы расскажем про новый бесплатный сервис от маркетплейса Joom для поиска проблем с производительностью Spark-заданий. Разбираемся, как он работает и чем полезен дата-инженеру. 4 главных проблемы Spark-приложений, их последствия и трудности обнаружения Если количество Spark-приложений невелико,...

Перебалансировка потребителей в Apache Kafka: чем она чревата и как с этим быть

Для параллельной обработки сообщений из своих топиков Kafka использует механизм группы приложений-потребителей, о чем мы писали здесь. Читайте далее, что происходит при изменении состава группы потребителей, чем опасна частая перебалансировка и как ее избежать. Что такое перебалансировка потребителей и почему она случается? Выполняя роль интеграционного звена между приложениями-продюсерами и приложениями-потребителями...

Распределенные транзакции в Greenplum

Недавно мы писали про трудности реализации ACID-требований к транзакциям в распределенных базах данных и способах их решения. Сегодня рассмотрим, как это работает в Greenplum с Arenadata DB: уровни изоляции, идентификаторы транзакций, моментальные снимки и MVCC-модель управления параллелизмом. Как GP и Arenadata DB реализуют распределенные транзакции Будучи основанной на PostgreSQL, Greenplum...

Доступность vs надежность: выборы лидера в Apache Kafka

Сегодня рассмотрим, как внутренние механизмы Apache Kafka обеспечивают отказоустойчивость это потоковой платформы передачи событий, а также разберем, почему до сих пор приходится выбирать между доступностью и надежностью. Выборы нового лидера при сбое прежнего и ожидание подтверждений об успешной репликации. Поиск компромисса между надежностью и доступностью в Apache Kafka Для обеспечения...

Безопасность данных в Apache HBase

Сегодня в рамках обучения администраторов SQL-on-Hadoop рассмотрим, как защитить данные в кластере Apache HBase от несанкционированного доступа. Аутентификация и авторизация пользователей, операторы управления доступом к таблицам, метки видимости и шифрование данных. Механизмы защиты данных в Apache HBase Как и любое хранилище, колоночно-ориентированная мультиверсионная NoSQL-СУБД типа key-value Apache HBase, которая работает...

Еще больше больших данных: масштабирование кластера Greenplum

Какие подходы позволяют увеличить емкость СУБД, чтобы повысить объем хранящихся в ней данных и ускорить вычисления. Разбираем тонкости масштабирования распределенной базы данных с массово-параллельной обработкой Greenplum: действия администратора по добавлению новых узлов в кластер. Как увеличить емкость базы данных: 4 подхода к масштабированию Чтобы увеличить емкость СУБД, т.е. объем хранимых...

Поиск по сайту