PXF, Greenplum и оптимизация SQL-запросов к разным источникам данных

Сегодня продолжим разбираться с интеграционным фреймворком Greenplum и рассмотрим, как PXF реализует SQL-запросы к различным OLAP и OLTP-источникам, поддерживая разные форматы данных. Зачем создавать внешнюю таблицу для Greenplum и какие параметры при этом указывать, а также чем хороша технология оптимизации pushdown. SQL и PXF: интеграция Greenplum с внешними источниками на...

На заметку разработчику Spark-приложений: 3 ошибки PySpark и тонкости Outer Join

В этой статье для дата-аналитиков и разработчиков распределенных приложений рассмотрим несколько распространенных ошибок, которые можно сделать в PySpark-коде. Когда PySpark-код на DataFrame DSL лучше запросов Spark SQL, как изящно решить проблему длинных строк, почему пользоваться функцией cache() надо осторожно, а также откуда появляются NULL-значения при внешних соединениях потоковых таблиц. Spark...

Как устроен PXF Greenplum: архитектура и принципы работы

Специально для дата-инженеров, разработчиков OLAP-конвейеров и архитекторов DWH на MPP-СУБД Greenplum и Arenadata DB сегодня рассмотрим, что представляет собой PXF, из каких компонентов он состоит и как они взаимодействуют друг с другом, чтобы обеспечить параллельный высокопроизводительный доступ к данным и объединенную обработку запросов к разнородным источникам. Что PXF и зачем...

Как передать данные из GridDB в Apache Kafka через JDBC-коннектор

Добавляя в наши курсы по Apache Kafka еще больше полезных кейсов, сегодня рассмотрим пример интеграции этой распределенной платформы потоковой передачи событий с масштабируемой key-value СУБД GridDB через JDBC-коннекторы Kafka Connect. Apache Kafka как источник данных: source-коннектор JDBC Apache Kafka часто используется в качестве источника или приемника данных для аналитической обработки...

Соединения и хуки в Apache Airflow: разбираем на примере SQLite

В прошлый раз мы говорили о способе взаимодействия задач между собой в Apache Airflow. Сегодня поговорим о таких сущностях, как соединение (connections) и хуки (hooks). Читайте в этой статье: что такое хук и соединение, как создать и скачать соединение, а также как подключить базу данных в Airflow. Что такое связи...

Apache Flink 1.14: что нового?

29 сентября 2021 года вышла новая версия популярного Big Data фреймворка Apache Flink. Мы сделали краткий обзор главных улучшений свежего релиза 1.14 общедоступного дистрибутива, а также его коммерциализации в Ververica Platform 2.6. Узнайте, как потоковая обработка и аналитики больших данных с Apache Flink станет еще проще и эффективнее. Исправление ошибок...

От Cassandra к Google Cloud Spanner: опыт Uber

Сегодня рассмотрим, как Uber эффективно обрабатывает миллионы запросов на поездки c помощью технологий надежного хранения и быстрой аналитики больших данных. Вас ждет краткий ликбез по системе геопространственной индексации H3 и рассказ о том, почему компания заменила NoSQL-Cassandra c компонентом Saga интеграционного фреймворка Camel на геораспределенную облачную NewSQL-СУБД Spanner от Google....

4 причины сбоя в системах на Apache Hadoop, Spark и Livy + способы их лечения от дата-инженеров Pinterest

Сегодня разберем типовые ошибки, которые часто возникают в системах аналитики больших данных на базе Apache Hadoop YARN, Spark и RESTful-интерфейсу Livy, а также каким образом их избежать. В качестве практического примера используем ранее рассмотренный кейс интерактивной аналитики о пользовательском поведении в фотохостинге Pinterest. Интерактивная аналитика больших данных в Pinterest Недавно...

CDC-конвейер для MySQL на Apache NiFi: практический пример

Сегодня разберем типичный для современной дата-инженерии кейс построения конвейера обработки измененных данных на Apache NiFi с учетом безопасности и масштабируемости API-вызовов. Также рассмотрим, зачем использовать Apache NiFi при межсистемной интеграции через API-вызовы и как реализовать CDC-подход к изменениям в СУБД MySQL с помощью процессоров этого популярного ETL-фреймворка. CDC и интеграция...

Бакетирование vs партиционирование в Apache Hive и Spark

В этой статье рассмотрим 2 способа физической группировки данных для ускорения последующей обработки в Apache Hive и Spark: партиционирование и бакетирование. Чем они отличаются друг от друга, что между ними общего и какой рост производительности дает каждый из методов в зависимости от задач аналитики больших данных средствами Spark SQL. Еще...

Поиск по сайту