Добавляя новые интересные примеры в наши курсы для дата-аналитиков, разработчиков распределенных приложений и администраторов SQL-on-Hadoop, сегодня рассмотрим опыт видеоаналитики в компании Vimeo с использованием Apache Spark. Как быстро запросить множество данных из Apache HDFS через Phoenix и Spark из моментальных снимков HBase с минимальным влиянием на кластер. Аналитика очень больших...
Сегодня в рамках обучения дата-аналитиков и разработчиков распределенных приложений, рассмотрим, что такое пользовательские функции в Apache Hive, как их создать и использовать. А также в чем проблема вызова UDF-функции, зарегистрированной в Hive, из Impala и при чем здесь Sentry. Простые и сложные UDF в Apache Hive Пользовательские функции в Hive...
О том, что такое spill-эффект, мы недавно писали на примере Apache Spark. Однако, проблема переброса данных из оперативной памяти на жёсткий диск и обратна характерна и для Greenplum. Где посмотреть количество и объем spill-файлов, а также как устранить причину их образования с помощью конфигурационных параметров и инструментов администратора. Что такое...
Ранее мы писали о том, как фотохостинг Pinterest с помощью новой версии Apache Flink 1.14, которая вышла в конце сентября 2021 года, объединяет пакетную и потоковую аналитику больших данных, чтобы еще лучше обслуживать более 475 миллионов своих пользователей. Сегодня поговорим про контроль сетевого трафика и синхронизацию источников данных через генерацию...
Мы уже писали, зачем нужна статистика таблиц при оптимизации SQL-запросов на примере Greenplum. Сегодня рассмотрим, как собрать статистические данные в таблицах Apache Hive, каким образом это поможет оптимизатору запросов и какие есть способы сбора статистики в этом популярном инструменте стека SQL-on-Hadoop. Еще раз о пользе статистики для оптимизации запросов в...
В рамках наших курсов для дата-инженеров и специалистов в области Data Science, сегодня рассмотрим, как реализовать один из важнейших этапов машинного обучения – Feature Engineering. Читайте далее, как генерировать признаки для ML-модели с помощью SQL, напрямую обращаясь к источникам данных и хранилищам фич, а также что такое Apache Hivemall и...
В этой статье для разработчиков распределенных приложений разберем проблему с производительностью Apache Spark из-за неоптимальной стратегии переброса данных между оперативной и постоянной памятью. Что такое spill-эффект, почему он случается, как его идентифицировать и устранить. Что такое spill и почему он случается: под капотом Spark-приложений При том, что spill можно рассматривать...
Недавно мы рассказывали про оптимизацию SQL-запросов в PXF – интеграционном фреймворке Greenplum. Сегодня рассмотрим, как этот способ обращения к внешним источникам данных можно применить к задачам машинного обучения на примере распознавания изображений. Platform Extension Framework как инструмент извлечения и преобразования изображений из облачных объектных хранилищ для обучений глубоких нейросетей с...
Чтобы сделать наши курсы по Apache Hadoop и компонентам этой экосистемы хранения и эффективной аналитики больших данных еще более полезными, сегодня рассмотрим, как получить данные из облачного объектного хранилища AWS S3 с помощью заданий Hive и Spark. А также заглянем внутрь конфигурационных xml-файлов Hadoop и Hive. Еще раз о разнице...
В рамках обучения аналитиков данных и дата-инженеров тонкостям работы с Apache Hive, сегодня разберем особенности ACID-транзакций в этом популярном инструменте класса SQL-on-Hadoop. Зачем и когда нужны ACID-транзакции в Apache Hive, какие параметры нужно настроить для их выполнения, при чем здесь блокировки, каковы ограничения и особенности уплотнения дельта-каталогов. Еще раз про...