Cloudera Data Science Workbench vs Arenadata Analytic Workspace: сравнительный обзор

Самообслуживаемая аналитика больших данных – один из главных трендов в современном мире Big Data, который дополнительно стимулирует цифровизация. В продолжение темы про self-service Data Science и BI-системы, сегодня мы рассмотрим, что такое Cloudera Data Science Workbench и чем это зарубежный продукт отличается от отечественного Arenadata Analytic Workspace на базе Apache...

Как связаны DataOps, цифровизация и аналитика больших данных: разбираем на примере отечественного Big Data продукта — Arenadata Analytic Workspace

Продолжая разговор про Apache Zeppelin, сегодня рассмотрим, как на его основе ведущий разработчик отечественных Big Data решений, компания «Аренадата Софтвер», построила самообслуживаемый сервис (self-service) Data Science и BI-аналитики – Arenadata Analytic Workspace. Читайте далее, как развернуть «с нуля» рабочее место дата-аналитика, где место этого программного решения в конвейере DataOps и при...

Как подключить PySpark и Kaggle в Google Colab

Недавно мы рассказывали, что такое PySpark. Сегодня рассмотрим, как подключить PySpark в Google Colab, а также как скачать датасет из Kaggle прямо в Google Colab, без непосредственной загрузки программ и датасетов на локальный компьютер. Google Colab Google Colab — выполняемый документ, который позволяет писать, запускать и делиться своим Python-кодом через...

Чем Apache Zeppelin лучше Jupyter Notebook для интерактивной аналитики Big Data: 4 ключевых преимущества

В этой статье мы рассмотрим, что такое Apache Zeppelin, как он полезен для интерактивной аналитики и визуализации больших данных (Big Data), а также чем этот инструмент отличается от популярного среди Data Scientist’ов и Python-разработчиков Jupyter Notebook. Что такое Apache Zeppelin и чем он полезен Data Scientist’у Начнем с определения: Apache...

Как управлять собственным Data Flow на Apache Spark с NiFi через Livy: разбираемся с процессорами и контроллерами

Apache Livy полезен не только при организации конвейеров обработки больших данных (Big Data pipelines) на Spark и Airflow, о чем мы рассказывали здесь. Сегодня рассмотрим, как организовать запланированный запуск пакетных Spark-заданий из Apache NiFi через REST-API Livy, с какими проблемами можно при этом столкнуться и что поможет их решить. Что...

Apache Livy vs Oozie: сравнительный обзор инструментов удаленного запуска Spark-задач

Продолжая разговор про Apache Livy, сегодня мы сравним этот REST API для Spark c другой популярной Big Data системой планирования рабочих процессов для управления заданиями Hadoop – Oozie. Читайте в нашей статье, что такое Apache Oozie, чем он похож на Livy и в чем между ними разница, а также когда...

Что под капотом Apache Livy: принципы и особенности работы со Spark

Вчера мы рассказывали про особенности совместного использования Apache Spark с Airflow и достоинства подключения Apache Livy к этой комбинации популярных Big Data фреймворков. Сегодня рассмотрим подробнее, как работает Apache Livy, а также за счет чего этот гибкий API обеспечивает удобство работы с Python-кодом и общие Spark Context’ы для разных операторов...

Зачем вам Apache Livy или как скрестить Spark с Airflow для эффективных Big Data pipeline’ов

Сегодня поговорим про построение конвейеров обработки данных (data pipeline) на примере совместного использования Apache Spark с Airflow и рассмотрим типовые проблемы этой комбинации. Читайте в нашей статье, как автоматизировать задачи пакетной и потоковой обработки больших данных (Big Data) с помощью гибкого REST-API Apache Livy, включая работу с Python-кодом, отказоустойчивость и...

Введение в PySpark

Python считается из основных языков программирования в областях Data Science и Big Data, поэтому не удивительно, что Apache Spark предлагает интерфейс и для него. Data Scientist’ы, которые знают Python, могут запросто производить параллельные вычисления с PySpark. Читайте в нашей статье об инициализации Spark-приложения в Python, различии между Pandas и PySpark,...

Запуск Apache Spark на Kubernetes: скрипты, операторы и особенности клиентского режима

Продолжая разговор про обучение Spark на реальных примерах, сегодня мы рассмотрим, как работает этот Big Data фреймворк на Kubernetes, популярной DevOps-платформе автоматизированного управления контейнеризированными приложениями. Читайте в нашей статье, как запустить приложение Apache Spark в кластере Kubernetes (K8s) с помощью submit-скрипта и оператора, а также при чем здесь Docker-образ. Запуск...

Поиск по сайту