Продвигая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим, что такое Nebula Graph и как использовать мощные возможности обработки графов этой NoSQL-СУБД в сочетании с Apache Spark, одним из самых популярных механизмов анализа данных. Что такое Nebula Graph и как это работает Nebula Graph — это...
В этой статье для специалистов по Machine Learning рассмотрим, от каких факторов зависит выбор MLOps-средств и как сделать его наиболее верным способом. Когда развертывание продукта с открытым исходным кодом или индивидуального решения на собственной инфраструктуре лучше готового инструмента в облаке и почему часто бывает наоборот. 3 главных фактора выбора MLOps-решений...
В линейке продуктов Databricks не только облачная платформа аналитики больших данных на базе Apache Spark. В портфолио компании также присутствует популярный MLOps-инструмент под названием MLflow, последний релиз которого (1.27.0) вышел 1 июля 2022 года. Однако, разработчики уже анонсировали в мажорный выпуск новой версии MLOps-фреймворка с открытым исходным кодом. Читайте далее,...
В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня разберем, как Airbnb использует графовые нейросети для улучшения машинного обучения. А также рассмотрим, как устроены GCN-нейросети и что определяет выбор между потоковым и пакетным ML-конвейером. Анализ графов для обогащения ML-моделей Многие проблемы машинного обучения могут быть...
Пока инженеры данных и специалисты по Data Science привыкали к MLOps, начав понимать важность и необходимость этой концепции непрерывной разработки и эксплуатации систем машинного обучения, в Data Science появился новый термин с модным –Ops окончанием. Разбираемся, что такое ModelOps, чем это отличается от MLOps и как применить его на практике....
Чтобы добавить в наши курсы для дата-инженеров и специалистов по Machine Learning еще больше практических примеров, сегодня рассмотрим, как построить ETL-конвейер для преобразования речи в текст с использованием Apache Kafka, Airflow и Spark. А также познакомимся с популярными фреймворками и готовыми сервисами распознавания речи. ETL-конвейер распознавания речи: используемые технологии Предположим,...
Сегодня в области Data Science именно машинное обучение является такой одновременно научной и прикладной сферой, где постоянно возникают новые прорывные идеи и технологии их реализации. Одной из самых популярных ML-тем сегодня считается федеративное машинное обучение. Что это такое и при чем здесь хайповый MLOps, читайте далее. Что такое федеративное машинное...
Сегодня разберемся, когда для Data Science-проектов вместо Apache Spark, самого популярного вычислительного движка аналитики больших данных, стоить выбрать Dask – легковесную Python-библиотеку для параллельных вычислений. И, наоборот, в каких случаях инженер данных и Data Scientist получают преимущества, выбирая Spark. Что такое Dask и зачем он нужен Data Scientist’у Прежде чем...
Что и насколько часто меняется в системах машинного обучения, почему необходимо отслеживать эти изменения и как MLOps помогает справиться с управлением ML-моделями, данными, кодом и инфраструктурой развертывания. Почему стек технологий MLOps такой разношерстный и какие инструменты выбирать для практического использования. MLOps для решения дрейфа данных и других проблем ML-систем Машинное...
Что не так с традиционными методами и инструментами разработки ПО для систем машинного обучения и как MLOps решает эти инженерные проблемы ML. Почему не стоит размещать файлы моделей Machine Learnig и датасеты в Git, а также зачем MLOps-инженеру решать вопросы архитектуры и управляться с Kubernetes. MLOps вместо Git-репозиториев Традиционные рабочие...