В рамках наших курсов для дата-инженеров и специалистов в области Data Science, сегодня рассмотрим, как реализовать один из важнейших этапов машинного обучения – Feature Engineering. Читайте далее, как генерировать признаки для ML-модели с помощью SQL, напрямую обращаясь к источникам данных и хранилищам фич, а также что такое Apache Hivemall и...
Недавно мы рассказывали про оптимизацию SQL-запросов в PXF – интеграционном фреймворке Greenplum. Сегодня рассмотрим, как этот способ обращения к внешним источникам данных можно применить к задачам машинного обучения на примере распознавания изображений. Platform Extension Framework как инструмент извлечения и преобразования изображений из облачных объектных хранилищ для обучений глубоких нейросетей с...
MLOps и построение конвейеров машинного обучения – одни из самых актуальных задач современной Data Science. Сегодня рассмотрим, чем совместное использование Apache Airflow и Ray полезно для дата-инженера и ML-разработчика. Читайте далее про кластерное развертывание Python-кода ML-моделей и упрощение ETL-процессов с Apache Airflow и Ray. Apache AirFlow для ML: возможности и...
Чтобы добавить в наши курсы для дата-инженеров еще больше полезных примеров, сегодня рассмотрим, как построить конвейер преобразования CSV-файлов и загрузить данные в масштабируемую NoSQL-СУБД GridDB с помощью Apache NiFi. Краткий ликбез по GridDB и Apache NiFi в кейсе построения ML-системы для анализа данных временных рядов. Анализ данных временных рядов c...
Продвигая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим работу Data Science исследователей из Пизанского университета и сотрудников крупного ритейлера H&M по анализу данных торгового ассортимента компании с помощью ML-моделей на графах. Читайте далее, как машинное обучение на графовых нейросетях автоматизирует подбор сочетаемых предметов одежды и...