Как перейти к Apache NiFi от Storm: пара практических кейсов

Apache Storm обычно сравнивают со другими популярными фреймворками потоковой аналитики больших данных: Spark и Flink. Однако для несложной обработки событий дата-инженер может заменить эти платформы более легким инструментом маршрутизации потоковых данных в виде Apache NiFi. Сегодня сравним Apache NiFi co Storm и разберем практический пример, когда предпочтительнее именно его для...

Почему stateful-приложения Apache Flink падают в AWS: RocksDB и IOPS облачных SSD

Продолжая разбирать особенности разработки потоковых приложений Apache Flink, сегодня рассмотрим проблему падения пропускной способности задания из-за встроенного хранилища состояний RocksDB и ее зависимость от производительности дисков. Вас ждет настоящая детективная история о том, как важно заглядывать под капот облачных кластеров и настраивать конфигурации своих stateful-приложений потоковой аналитики больших данных с...

RocksDB как хранилище состояний для stateful-приложений Apache Flink

Мы уже рассказывали, что приложения Kafka Streams используют RocksDB в качестве хранилища состояний. Сегодня рассмотрим, как это key-value NoSQL-СУБД используется для разработки stateful-приложений Apache Flink. Читайте далее о преимуществах и особенностях применения RocksDB для управления состоянием Flink-приложения, а также заблуждениях, связанных с этими фреймворками. 3 бэкенда Apache Flink для хранения...

Кейс потоковой аналитики больших данных с Apache Kafka, Spark (Flink) и BI-системами

Сегодня рассмотрим пример построения системы потоковой аналитики больших данных на базе Apache Kafka, Spark, Flink, NoSQL-СУБД, BI-системой Tableau или визуализацией в Kibana. Читайте далее, кому и зачем исследовать Twitter-посты в реальном времени, как это реализовать технически, визуализировать в наглядных BI-дэшбордах для принятия data-driven решений и при чем здесь Kappa-архитектура. Еще...

От пакетов к потокам с Kafka и Flink: аналитика больших данных по пользовательским сеансам в Spotify

Сегодня рассмотрим преимущества потоковой обработки данных с Apache Kafka и Flink над пакетными Big Data технологиями в виде Hadoop, Spark и Oozie. В качестве примера разберем реальный кейс аналитики больших данных по пользовательским сеансам в музыкальном онлайн-сервисе Spotify, а также возможность замены Apache Flink на Spark Structured Streaming. От рекламы...

Apache Flink vs Spark: что и когда выбрать для потоковой обработки Big Data

Flink часто сравнивают с Apache Spark, другим популярным инструментом потоковой обработки данных. Оба этих распределенных отказоустойчивых фреймворка с открытым исходным кодом используются в высоконагруженных Big Data приложениях для анализа данных, хранящихся в кластерах Hadoop [1] и других кластерных системах. В этой статье мы поговорим, чем похожи и чем отличаются Флинк и Спарк, а...

Поиск по сайту