Как сократить стоимость и время обработки данных в Spark-приложений: кейс AppsFlyer

Сегодня рассмотрим кейс международной ИТ-компании AppsFlyer, которая создает SaaS-решения для маркетинговой аналитики в режиме онлайн. В этой статье команда разработки аналитического продукта Data Locker делится опытом оптимизации ETL-приложений Apache Spark для снижения стоимости обработки данных и ускорения вычислений. Предыстория: слишком много файлов в ETL-решении на Spark и AWS S3 в...

Apache Iceberg для Data Lake: что это такое, зачем нужно и как работает

В недавней статье про преимущества хранилища метаданных Apache Hive и другие плюсы этого популярного инструмента SQL-on-Hadoop, мы упоминали формат открытых таблиц Iceberg как альтернативу для хранения огромных наборов аналитических данных. Он добавляет высокопроизводительные SQL-подобные таблицы в вычислительные механизмы Spark, Trino, Presto, Flink и Hive. Сегодня рассмотрим подробнее, что такое Apache Iceberg и...

Перспективы Apache Hive: развитие или забвение?

Появившись более 10 лет назад, Apache Hive до сих пор является самым популярным инструментом стека SQL-on-Hadoop и активно используется для аналитики больших данных. Однако, технологии Big Data постоянно развиваются: Spark все чаще заменяет Hadoop MapReduce, а вместо HDFS все чаще используются объектные облачные хранилища: AWS S3, Delta Lake, Apache Ozone...

Строим масштабируемые ETL/ELT-конвейеры обработки данных с Apache Spark и AirFlow: 4 совета дата-инженеру

В этой статье для дата-инженеров мы собрали лучшие практики построения масштабируемых конвейеров обработки данных, а также популярные рекомендации по проектированию ETL/ELT-процессов с Apache Spark, AirFlow и другими технологиями Big Data. Читайте далее, когда ELT лучше ETL и наоборот, чем хорош Apache Spark в конвейерах обработки Big Data, зачем нужен AirFlow,...

Apache NiFi для всех: Cloudera Flow Management в публичном облаке

Чтобы сделать наши курсы по Apache NiFi для дата-инженеров еще более полезными, сегодня рассмотрим новые возможности последнего релиза Cloudera Flow Management 2.1.1 на базе этого фреймворка. Выпущенная в апреле 2021 года, платформа Cloudera Flow Management в составе публичного и частного облака предоставляет Apache NiFi версии 1.13.2, включая дополнительные компоненты, а...

Динамическое сжатие файлов в Apache Spark: опыт Databricks и не только

При том, что Apache Spark является одной из главных технологий стека Big Data, этот фреймворк не очень хорошо работает с множеством файлов небольшого размера. Поэтому в рамках обучения дата-инженеров и разработчиков распределенных приложений, сегодня рассмотрим, почему это происходит, зачем динамически сжимать файлы в Apache Spark и как это делает платформа...

Безопасность в режиме онлайн: SIEM-система на базе Apache NiFi от Cloudera

В этой статье для дата-инженеров рассмотрим, что такое Cloudera Flow Management и как это позволяет ускорить аналитику больших данных в кейсах информационной безопасности. Читайте далее о преимуществах SIEM-анализа, преобразования и распределения security-событий с помощью Apache NiFi и его легковесного агента MiNiFi для устройств интернета вещей (Internet Of Things, IoT). Что...

Как упростить загрузку данных в Data Lake с Apache AirFlow

Чтобы добавить в курсы по Apache AirFlow еще больше полезных примеров, сегодня рассмотрим, как избежать дублирования кода при загрузке данных. Этот пример пригодится дата-инженерам в работе с ELT-процессами наполнения информацией корпоративных хранилищ и озер данных. Читайте про фреймворк динамической загрузки данных на базе конфигурационных YAML-файлов, DAG-фабрик и загрузчиков. Проблема дублирования...

Как хранить большие данных в Greenplum: ТОП-15 рекомендаций

Продвигая наш новый курс «Greenplum для инженеров данных», сегодня мы рассмотрим особенности организации таблиц в этой MPP-СУБД, типы данных и оптимальное расположение столбцов. Читайте далее, чем heap storage отличается от append-optimized, когда выбирать колоночную, а когда – строковую модель хранения данных для таблицы, почему BIGINT с TIMESTAMP следует размещать перед...

Как упростить работу с DWH и Data Lake: DBT + Apache Spark в AWS

Сегодня рассмотрим, что такое Data Build Tool, как этот ETL-инструмент связан с корпоративным хранилищем и озером данных, а также чем полезен дата-инженеру. В качестве практического примера разберем кейс подключения DBT к Apache Spark, чтобы преобразовать данные в таблице Spark SQL на Amazon Glue со схемой поверх набора файлов в AWS...