Постоянно добавляя в наши курсы Apache Kafka для разработчиков интересные и практические примеры, сегодня мы разберем кейс тревел-площадки Trainline, которая агрегирует данные от 270 железнодорожных и автобусных компаний в 45 странах, предлагая выгодные билеты на европейские поезда и автобусы. Читайте далее, почему пакетный режим работы озера данных перестал отвечать требованиям...
Сегодня рассмотрим пример построения системы аналитики больших данных для мониторинга финансовых транзакций в реальном времени на базе облачного Delta Lake и конвейера распределенных приложений Apache Kafka, Spark Structured Streaming и других технологий Big Data. Читайте далее о преимуществах облачного Delta Lake от Databricks над традиционным Data Lake. Постановка задачи: финансовая...
Чтобы дополнить наши курсы по Spark для разработчиков распределенных приложений и инженеров данных практическими примерами, сегодня рассмотрим кейс американской ИТ-компании ThousandEyes, которая разрабатывает программное обеспечение для анализа производительности локальных и глобальных сетей. Читайте далее, как создать надежный конвейер и устойчивое озеро данных (Data Lake) для быстрой аналитики Big Data в...
Мы уже рассказывали, почему качество данных является важнейшим аспектом разработки и эксплуатации Big Data систем. Приемлемое для эффективного использования качество массивов информации достигается не только с помощью процессов подготовки датасета к машинному обучению и профилирования данных, но и за счет их согласования. Читайте далее, что такое Data reconciliation, зачем это...
Продолжая разговор про фиксацию заданий Apache Spark при работе с облачными хранилищами больших данных, сегодня подробнее рассмотрим, насколько эффективны commit-протоколы экосистемы Hadoop, предоставляемые по умолчанию, и почему известный разработчик Big Data решений, компания Databricks, разработала собственный алгоритм. Читайте далее про сравнение протоколов фиксации заданий в Spark-приложениях: результаты оценки производительности и...
Сегодня поговорим про особенности транзакций в Apache Spark, что такое фиксация заданий в этом Big Data фреймворке, как она связано с протоколами экосистемы Hadoop и чем это ограничивает переход в облако с локального кластера. Читайте далее, как найти компромисс между безопасностью и высокой производительностью, а также чем облачные хранилища отличаются...
Сегодня рассмотрим, когда микросервисные архитектуры не подходят для систем машинного обучения и какие технологии Big Data следует использовать в этом случае. В этой статье мы расскажем, что такое Feature Store, как это хранилище признаков для моделей Machine Learning повышает эффективность MLOps-процессов и сокращает цикл разработки ML-систем, а также при чем...
Сегодня поговорим про ETL-процессы в мире Big Data на примере построения непрерывного конвейера поставки больших данных о транзакциях для сервисов машинного обучения. Читайте далее, из чего состоит типичная архитектура такой системы на базе Apache Kafka, Spark, HBase и Hive, а также почему большинство ETL-инструментов не подходят для потоковой передачи событий...
Чтобы добавить в наши курсы для дата-инженеров еще больше реальных примеров и лучших DataOps-практик, сегодня мы расскажем, как специалисты крупной норвежской компании DNB обеспечивают надежный доступ к чистым и точным массивам Big Data, применяя передовые методы проектирования данных и реализации конвейеров их обработки. В этой статье мы собрали для вас...
Говоря про практическое обучение Apache Spark для дата-инженеров, сегодня рассмотрим особенности разработки собственного коннектора для этого фреймворка на примере его интеграции с BI-системой Tableau. Читайте далее, как конвертировать Spark RDD в нужный формат и сделать свой коннектор удобным для пользователей. Интеграция Spark с внешними источниками данных через коннекторы Apache Spark...