Трудности перехода: миграция данных с HDFS на MinIO

Недавно мы рассматривали производительность ETL-конвейеров на Apache Spark с озером данных на MinIO. Сегодня разберем, чем это легковесное объектное хранилище отличается от распределенной файловой системы Apache Hadoop и как перейти на него с HDFS. Зачем переходить на MinIO Хотя HDFS до сих пор активно используется во многих Big Data проектах...

Apache Kafka vs AWS Kinesis: сходства и отличия

В связи с активным переходом от локальной ИТ-инфраструктуры в облачные полностью управляемые сервисы многие ИТ-архитекторы и дата-инженеры задумываются о замене собственного кластера Apache Kafka ее Cloud-альтернативами. Читайте, что общего у Apache Kafka с AWS Kinesis, чем они отличаются и какую платформу выбрать для потоковой передачи событий. Потоковая обработка событий с...

4 способа упаковать PySpark-приложение для отправки в кластер Apache Spark

Чтобы добавить в наши практические курсы по Apache Spark еще больше приемов, полезных для дата-инженеров и разработчиков, сегодня рассмотрим, как упаковать PySpark-приложение, используя нативные Python-функции и сторонние решения. Отличия Virtualenv от PEX и Conda. 4 способа упаковать PySpark-приложение для запуска в кластере Apache Spark Разработчики распределенных приложений знают, что недостаточно...

3 способа совместного использования DAG-файлов в Apache AirFlow на Kubernetes

В этой статье для обучения дата-инженеров и администраторов кластера разберем способы организации совместного использования DAG-файлов при развертывании Apache AirFlow в Kubernetes. Чем хорош вариант с общими томами и почему от него лучше отказаться в пользу Git. Как организовать обмен DAG-файлами в Apache AirFlow на Kubernetes Развертывание Apache AirFlow в кластере...

Окна и водяные знаки: потоковая обработка данных с Apache Flink

Продолжая разговор про оконные операции в Apache Flink для потоковой аналитики больших данных, сегодня рассмотрим, как это связано с другим важным концептом потоковой обработки событий – водяным знаком. Что такое Watermark и каковы стратегии его генерации в Apache Flink: самое главное для дата-инженера. Потоковая синхронизация данных c SQL для Flink...

Тонкости MERGE-запроса в Neo4j

Продвигая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня разберем особенности работы оператора MERGE во встроенном SQL-подобном языке запросов Cypher популярной NoSQL-СУБД Neo4j. Чем он отличается от запросов CREATE и MATCH, а также когда этот оператор более всего полезен. Как работает MERGE-запрос в Neo4j Data Scientist’ы и аналитики данных знают,...

Разделение репозиториев и настройка доступности: советы администратору Apache NiFi

Мы часто делимся полезными лайфхаками и лучшими практиками администрирования и эксплуатации технологий Big Data. Сегодня специально для обучения дата-инженеров рассмотрим, как лучше настроить репозитории Apache NiFi и параметры кластера, чтобы повысить производительность и надежность этого популярного ETL-маршрутизатора потока данных.  4 репозитория Apache NiFi Репозиторий потоковых файлов содержит информацию обо всех...

Не просто бургеры: архитектура данных в McDonald’s с Apache Kafka

Сегодня заглянем под капот ИТ-инфраструктуры самой знаменитой франшизы быстрого питания. Как устроена унифицированная платформа потоковой обработки событий в McDonald’s на базе облачного полностью управляемого сервиса Apache Kafka в AWS и что гарантирует высокую доступность и надежность решения. Архитектурный дизайн Архитектуры, основанные на событиях, обеспечивают гибкость интеграции, масштабируемость и некоторые возможности...

Инструментарий MLOps c MLflow и DVC: versus или вместе?

Продолжая разбираться с популярными MLOps-инструментами, сегодня рассмотрим, как MLflow реализует управление версиями модели и данных, а также чем это отличается от DVC. Преимущества и недостатки популярных MLOps-инструментов с возможностями их совместного использования. Плюсы и минусы MLflow для MLOps-инженера Концепция MLOps, направленная на сокращение разрыва между различными специалистами, участвующими в процессах...

Безопасная архитектура LakeHouse с Apache Kafka, управляемая метаданными

Сегодня рассмотрим пример построения гибридной архитектуры LakeHouse c Apache Kafka и Snowflake, которая гарантирует высокую масштабируемость и обеспечивает безопасность данных от несанкционированного доступа с помощью маскирования. От пакетного озера данных на AWS S3 к потоковому LakeHouse Будучи высоконадежной распределенной платформой потоковой передачи событий, Apache Kafka часто используется для обработки потока...

ETL с Apache Spark в озере данных на MinIO

При том, что большинство современных озер данных представляют собой облачные объектные хранилища типа AWS S3, многие предприятия хранят данные в собственном кластере HDFS или даже MinIO. Поэтому сегодня специально для обучения дата-инженеров и ИТ-архитекторов рассмотрим, что представляет собой это хранилище и насколько хорошо с ним взаимодействует Apache Spark. Что такое...

Быстрая индексация данных в HDFS, Hadoop и Spark с библиотекой Dione от PayPal

Чтобы добавить в наши курсы по Apache Hadoop и Spark еще больше интересных примеров, сегодня рассмотрим кейс компании PayPal, которой удалось ускорить работу Hive с помощью open-source библиотеки Dione. Зачем индексировать данные в HDFS и как это сделать быстро. Трудности бакетирования в Hive и Spark Вычислительный движок Apache Spark отлично...

Greenplum 6.21.1: обзор свежего релиза

Совсем недавно, в самом конце августа 2022 года вышел очередной минорный выпуск Greenplum. Специально для обучения дата-инженеров, ИТ-архитекторов и разработчиков распределенных OLAP-приложений мы подготовили краткий обзор самых важных обновлений и изменений версии 6.21.1. 15 исправлений на сервере Greenplum В отличие от июньского релиза, новинок в этом выпуске немного: добавлено новое...

Чем Apache Airflow лучше cron и как на него перейти

Зачем переходить с cron на AirFlow и как это сделать наиболее эффективно: практические тонкости планирования и оркестрации пакетных процессов для дата-инженера с примерами и лайфхаками. Что такое cron и почему его недостаточно для инженерии данных Дата-инженеры часто работают с утилитой cron (Command Run ON), чтобы автоматически запускать на выполнение скрипты...

Миграция с Apache HBase в TiDB: кейс Pinterest

Хотя Apache HBase обладает массой достоинств, такими как строгая согласованность на уровне строк при больших объемах запросов, гибкая схема, доступ к данным с малой задержкой и интеграция с Hadoop, эта NoSQL-СУБД имеет ряд недостатков: чрезмерная сложность и дороговизна эксплуатации, отсутствие вторичных индексов и ACID-транзакций. Поэтому инженеры фотохостинга Pinterest приняли решение...

Большая проблема маленьких файлов в Apache Hadoop HDFS

Мы уже писали, что технологии Big Data ориентированы на работу с большими данными, а не множеством маленьких. Сегодня рассмотрим подробнее, почему Apache Hadoop, Spark и основанные на HDFS NoSQL-СУБД Hive и HBase плохо работают с большим количеством маленьких файлов, а также как это исправить. Почему HDFS плохо работает со множеством...

Применение SeaTunnel для управления SQL-заданиями Apache Flink и Spark

Мы регулярно добавляем в наши курсы по Apache Flink и Spark для дата-инженеров полезные материалы и инструменты, которые помогают повысить эффективность разработки и эксплуатации приложений аналитики больших данных. Читайте далее, что такое SeaTunnel и как эта высокопроизводительная платформа интеграции распределенных данных упрощает их потоковую синхронизацию средствами SQL-заданий Apache Flink и...

Apache NiFi 1.17: обзор нового релиза

1 августа 2022 года вышел очередной выпуск самого популярного потокового ETL-маршрутизатора. Что нового в Apache NiFi 1.17 для дата-инженера и администратора кластера: новые фичи, исправления ошибок и главные улучшения. Главные новинки Apache NiFi 1.17 Свежий выпуск Apache NiFi 1.17.0 включает сотни исправлений ошибок, улучшений и обновлений зависимостей для повышения стабильности...

Идеальная облачная среда озера данных и DaaS: возможности и риски

Чтобы добавить в наши курсы для ИТ-архитекторов и дата-инженеров еще больше практических примеров, сегодня разберем ключевые требования к современному озеру данных и самые последние тренды в аналитике Big Data. Что такое DaaS, зачем это нужно и каковы риски. 7 преимуществ развертывания Data Lake в облаке При том, что Data Lake...

Абсолютно безопасно: PEM-аутентификация Apache Kafka по REST API

Специально для обучения дата-инженеров и администраторов кластера Apache Kafka, сегодня разберем, как обеспечить безопасность клиента этой распределенной платформы потоковой передачи событий по REST API с помощью возможностей открытого ПО. Что такое PEM-файлы и при чем здесь SSL-сертификаты, а также другие криптографические средства защиты данных: кейс инженеров Expedia Group. Инструменты обеспечения...

Изменение базового тарифа с 1 января 2026 года Подробнее