Мы уже писали о Python-клиентах Apache Kafka, которые позволяют разрабатывать приложения потоковой передачи события, используя популярный Python вместо сложных языков Java и Scala. Сегодня познакомимся с еще одной Python-библиотекой, которая представляет асинхронный клиент для Kafka. Что такое aiokafka и чем это отличается от kafka-python: краткий обзор для обучения инженеров данных...
Сегодня рассмотрим важную тему для обучения дата-инженеров и разработчиков распределенных Spark-приложений. Как устроена потоковая обработка данных в Apache Spark Structured Streaming, зачем нужны водяные знаки и с какими сложностями при этом можно столкнуться. Как работают водяные знаки в потоковой передача событий Apache Spark Библиотека потоковой обработки событий Structured Streaming основана...
Сегодня рассмотрим тему анализа и оптимизации бизнес-процессов средствами графовой аналитики больших данных. Как устроены информационные системы класса Process Mining, где еще применяются эти идеи и другие приложения теории графов в бизнесе на примере Python-библиотеки PM4Py. Что такое Process Mining Чтобы понять, как выполняется процесс, бизнес-аналитик строит его схему в виде подробной EPC...
Data Mesh воплощает децентрализованный подход к построению распределенной архитектуры данных. При всех достоинствах этой модели, которая совмещает потоковую и пакетную парадигмы обработки данных, она еще довольно незрелая и имеет ряд недостатков. Одним из них является проблема с информационной безопасностью, что мы и рассмотрим далее для обучения ИТ-архитекторов и дата-инженеров. Безопасность...
Мы уже рассказывали про важность переносимости ML-моделей, что является одним из аспектов MLOps-концепции. Сегодня разберем, почему популярный формат Pickle не лучший выбор для сохранения модели Machine Learning и что использовать вместо него. Пара достоинств и 7 главных недостатков формата Pickle Согласно концепции MLOps, направленной на сокращение разрыва между различными специалистами,...
Недавно мы писали про устранение серьезной уязвимости PostgreSQL в свежем выпуске Greenplum 6.21.1. Продолжая тему cybersecurity, сегодня разберем другие значимые угрозы, которые были устранены в этой MPP-СУБД в 2022 и 2021 годах. Угрозы безопасности Greenplum и PostgreSQL Будучи основанной на объектно-реляционной СУБД PostgreSQL, что мы разбирали здесь, Greenplum подвержен многим...
Для практического обучения дата-инженеров и архитекторов Big Data систем сегодня рассмотрим трудности изоляции и распределения в кластере Apache HBase и способы их обхода. С какими проблемами изоляции и сбалансированного распространения данных столкнулись инженеры индийской e-commerce компании Flipkart при организации мультиарендного кластера Apache HBase и как их решили. Изоляция данных и...
В этой статье для обучения дата-инженеров и администраторов SQL-on-Hadoop рассмотрим способы обеспечения информационной безопасности и защиты данных от несанкционированного доступа в Apache Hive. Классический security-набор: аутентификация, авторизация и шифрование. Авторизация и аутентификация в Apache Hive Будучи популярным инструментом стека SQL-on-Hadoop, Apache Hive поддерживает все механизмы обеспечения информационной безопасности, поддерживаемый базовой...
Недавно мы рассматривали производительность ETL-конвейеров на Apache Spark с озером данных на MinIO. Сегодня разберем, чем это легковесное объектное хранилище отличается от распределенной файловой системы Apache Hadoop и как перейти на него с HDFS. Зачем переходить на MinIO Хотя HDFS до сих пор активно используется во многих Big Data проектах...
В связи с активным переходом от локальной ИТ-инфраструктуры в облачные полностью управляемые сервисы многие ИТ-архитекторы и дата-инженеры задумываются о замене собственного кластера Apache Kafka ее Cloud-альтернативами. Читайте, что общего у Apache Kafka с AWS Kinesis, чем они отличаются и какую платформу выбрать для потоковой передачи событий. Потоковая обработка событий с...
Чтобы добавить в наши практические курсы по Apache Spark еще больше приемов, полезных для дата-инженеров и разработчиков, сегодня рассмотрим, как упаковать PySpark-приложение, используя нативные Python-функции и сторонние решения. Отличия Virtualenv от PEX и Conda. 4 способа упаковать PySpark-приложение для запуска в кластере Apache Spark Разработчики распределенных приложений знают, что недостаточно...
В этой статье для обучения дата-инженеров и администраторов кластера разберем способы организации совместного использования DAG-файлов при развертывании Apache AirFlow в Kubernetes. Чем хорош вариант с общими томами и почему от него лучше отказаться в пользу Git. Как организовать обмен DAG-файлами в Apache AirFlow на Kubernetes Развертывание Apache AirFlow в кластере...
Продолжая разговор про оконные операции в Apache Flink для потоковой аналитики больших данных, сегодня рассмотрим, как это связано с другим важным концептом потоковой обработки событий – водяным знаком. Что такое Watermark и каковы стратегии его генерации в Apache Flink: самое главное для дата-инженера. Потоковая синхронизация данных c SQL для Flink...
Продвигая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня разберем особенности работы оператора MERGE во встроенном SQL-подобном языке запросов Cypher популярной NoSQL-СУБД Neo4j. Чем он отличается от запросов CREATE и MATCH, а также когда этот оператор более всего полезен. Как работает MERGE-запрос в Neo4j Data Scientist’ы и аналитики данных знают,...
Мы часто делимся полезными лайфхаками и лучшими практиками администрирования и эксплуатации технологий Big Data. Сегодня специально для обучения дата-инженеров рассмотрим, как лучше настроить репозитории Apache NiFi и параметры кластера, чтобы повысить производительность и надежность этого популярного ETL-маршрутизатора потока данных. 4 репозитория Apache NiFi Репозиторий потоковых файлов содержит информацию обо всех...
Сегодня заглянем под капот ИТ-инфраструктуры самой знаменитой франшизы быстрого питания. Как устроена унифицированная платформа потоковой обработки событий в McDonald’s на базе облачного полностью управляемого сервиса Apache Kafka в AWS и что гарантирует высокую доступность и надежность решения. Архитектурный дизайн Архитектуры, основанные на событиях, обеспечивают гибкость интеграции, масштабируемость и некоторые возможности...
Продолжая разбираться с популярными MLOps-инструментами, сегодня рассмотрим, как MLflow реализует управление версиями модели и данных, а также чем это отличается от DVC. Преимущества и недостатки популярных MLOps-инструментов с возможностями их совместного использования. Плюсы и минусы MLflow для MLOps-инженера Концепция MLOps, направленная на сокращение разрыва между различными специалистами, участвующими в процессах...
Сегодня рассмотрим пример построения гибридной архитектуры LakeHouse c Apache Kafka и Snowflake, которая гарантирует высокую масштабируемость и обеспечивает безопасность данных от несанкционированного доступа с помощью маскирования. От пакетного озера данных на AWS S3 к потоковому LakeHouse Будучи высоконадежной распределенной платформой потоковой передачи событий, Apache Kafka часто используется для обработки потока...
При том, что большинство современных озер данных представляют собой облачные объектные хранилища типа AWS S3, многие предприятия хранят данные в собственном кластере HDFS или даже MinIO. Поэтому сегодня специально для обучения дата-инженеров и ИТ-архитекторов рассмотрим, что представляет собой это хранилище и насколько хорошо с ним взаимодействует Apache Spark. Что такое...
Чтобы добавить в наши курсы по Apache Hadoop и Spark еще больше интересных примеров, сегодня рассмотрим кейс компании PayPal, которой удалось ускорить работу Hive с помощью open-source библиотеки Dione. Зачем индексировать данные в HDFS и как это сделать быстро. Трудности бакетирования в Hive и Spark Вычислительный движок Apache Spark отлично...




















