Как на лету обогатить поток данных Flink с использованием внешнего API

Обогащение потока данных информацией из внешнего API без остановки вычислений: 3 способа реализовать это средствами Apache Flink на примере сервиса геолокации. Зачем обогащать потоковые данные через внешний API и как это сделать для Flink-приложения? Иногда необходимо обогатить потоки данных, т.е. дополнить потоковые данные в реальном времени, т.е. на лету, не...

Разделы и потребители Apache Kafka: практический пример

Чтобы разобраться, как на самом деле работают разделы и потребители Apache Kafka, сегодня рассмотрим небольшой демонстрационный пример, иллюстрирующий потребление сообщений. Пишем Python-скрипты публикации и потребления сообщений из разных разделов топика Kafka с занесением данных в несколько вкладок Google-таблицы. Как сообщения распределяются по разделам топика Kafka Напомним, в Apache Kafka раздел...

Apache Spark 3.4.0: обзор апрельского релиза

12 апреля 2023 года вышел очередной релиз Apache Spark. Разбираемся с самыми главными новинками этого выпуска, которые порадуют аналитиков, разработчиков, инженеров данных и специалистов по Data Science. Расширенная поддержка Python, улучшения Spark SQL и Structured Streaming. Обновления Spark SQL и новинки для пользователей Python Apache Spark 3.4.0 — это пятый...

Пишем Python-скрипт для работы с графом в Neo4j

Сегодня решим логистическую задачу поиска кратчайшего пути, создав граф знаний в Neo4j, развернутой в облачной платформе Aura DB и визуализируем найденный путь с помощью Python-библиотеки Networkx. Работа с Neo4j в AuraDB В прошлой статье мы упоминали, что для работы с популярной графовой СУБД Neo4j совсем необязательно устанавливать ее локально. Можно...

Архитектура MLOps и управление инфраструктурой как кодом

Из каких компонентов состоит архитектура MLOps, что такое инфраструктура как код, как управлять ею с помощью скриптов и почему это нужно на каждом этапе жизненного цикла моделей Machine Learning. Жизненный цикл ML-модели и MLOps MLOps – это набор методов и техник машинного обучения вместе с лучшими практиками разработки, развертывания и...

Как подключиться к Greenplum: обзор клиентов и настройка конфигураций

Через какие интерфейсы пользователи и клиентские приложения могут подключиться к базе данных Greenplum, как происходит подключение, какие параметры и конфигурации надо задать при этом, а также почему для этого так важна библиотека libpq. Параметры подключения к Greenplum Пользователи могут подключаться к базе данных Greenplum с помощью клиентской программы, совместимой с...

3 ошибки дата-инженера при использовании Apache NiFi

Как сделать Apache NiFi еще эффективнее, избежав трех самых популярных ошибок дата-инженера. Разбираемся с автоматизацией операций развертывания, скриптовыми процессорами, а также шаблонами и реестром NiFi для развертывания потоков данных. Ошибка №1: ручное развертывание Хотя Apache NiFi имеет мощный пользовательский интерфейс для проектирования конвейеров потоковой обработки данных, его не стоит рассматривать...

2 способа удалить сообщения из топика Apache Kafka

Почему в Apache Kafka нет функций очистки топика и как же все-таки удалить из него все сообщения, если очень нужно, используя конфигурации retention и другие приемы администрирования кластера. Политика очистки и конфигурации retention В отличие от брокеров сообщений, которые после отправки данных приложениям-потребителям, удаляют их из очереди, Apache Kafka хранит...

Мониторинг загрузки ЦП для приложений Apache Flink с Flame Graph

Мы уже писали о важности отслеживания системных метрик приложений Apache Flink и RocksDB, используемой этим фреймворком для хранения состояния stateful-заданий. Сегодня рассмотрим, как отследить потребление ресурсов ЦП средствами встроенной визуализации Flame Graphs. Что такое Flame Graph и зачем это нужно? Помимо мониторинга длительности выполнения задач и заданий, дата-инженерам и разработчикам...

Блеск и нищета микросервисной архитектуры для платформы данных

Сегодня разберем проблемы микросервисной архитектуры для платформ данных и способы их решения, а также вспомним 5 популярных шаблонов развертывания, которые могут смягчить риски от внедрения новых версий многокомпонентной системы. Проблемы микросервисной архитектуры для платформы данных и способы их решения При всех плюсах микросервисной архитектуры (автономность, гибкость, масштабируемость, простота развертывания, технологическая...

Поиск по сайту