Разработка высоконагруженных систем потоковой аналитики больших данных включает не только написание кода, но и его оптимизацию. Поэтому разработчикам приложений Apache Spark Structured Streaming и дата-инженерам полезно знать, как можно повысить эффективность своих Big Data систем. В этой статье мы рассмотрим конфигурации и приемы, которые могут ускорить пакетные и потоковые вычисления....
Сегодня рассмотрим, как в Apache AirFlow реализуется обмен данными между задачами с использованием технологии XCom. Чем хорош XCom и почему его не стоит использовать для передачи больших объемов данных: практика организации ETL-конвейеров для дата-инженера. Что такое XCom и зачем это в Apache AirFlow Apache AirFlow не зря является одним из...
10 октября 2022 года вышел очередной релиз Apache NiFi. Разбираемся с его ключевыми новинками: провайдеры параметров, подключаемый реестр клиентов, новые процессоры и улучшения протокола MQTT. Самые главные фичи свежего выпуска для дата-инженера и администратора кластера Apache NiFi. ТОП-7 новых фич свежего релиза Будучи популярным инструментов современной дата-инженерии, Apache NiFi активно...
Как турецкая e-commerce компания Trendyol повысила эффективность пакетных вычислений, используя распределенную платформу потоковой обработки событий Apache Kafka вместе с серверной утилитой сбора и фильтрации данных из разных источников Logstash. Пакетная обработка данных и конвейер на Logstash Хотя сегодня все больше организаций переходят на потоковую обработку событий в реальном времени, пакетная...
Все архитекторы DWH и многие дата-инженеры знакомы с идеями Ральфа Кимбалла, согласно которым хранилище данных — это сочетание множества различных витрин данных, облегчающих отчетность и анализ важных бизнес-показателей. Читайте далее, как реализовать этот подход при проектировании корпоративного хранилища данных и при чем здесь Data Mesh. КХД по Кимбаллу: доменные витрины...
В этой статье продолжим говорить про лучшие практики работы с Greenplum и рассмотрим тонкости проектирования схем данных в этой MPP-СУБД, которая часто применяется для хранения и аналитики больших данных. Почему надо задавать одинаковые типы данных для столбцов, используемых в SQL-запросах c оператором JOIN, чем хранилище кучи отличается от Append Only,...
Сегодня рассмотрим, как реализовать MLOps-идеи при разработке приложений Apache Flink с использованием MLeap, библиотеки сериализации для моделей машинного обучения. Зачем инженеры GetInData разрабатывали для этого свой коннектор и как его использовать на практике. Что такое MLeap и при чем здесь MLOps Будучи популярным вычислительным движком для потоковой аналитики больших данных,...
Мы уже писали про использование криптографии в Apache Spark. Сегодня в рамках обучения дата-инженеров и разработчиков распределенных приложений рассмотрим, как шифровать столбцы датафрейма в PySpark и расшифровывать их с использованием алгоритма шифрования AES. Основы кибербезопасности: ликбез по шифрованию данных Шифрование данных преобразует данные в другую форму или код, чтобы их...
Каждый разработчик и дата-аналитик с закрытыми глазами напишет SQL-запрос с регулярными выражениями для поиска данных по шаблону в реляционной базе. А вот в NoSQL-СУБД такая простая задача реализуется довольно сложно. Как написать регулярное выражение в Apache HBase и запустить его на исполнение в CLI-интерфейсе shell-оболочки этого хранилища данных. Что такое...
Как повысить качество данных и пакетных конвейеров с их обработки в Apache AirFlow с Python-библиотекой Whylogs. Что это за средство регистрации и профилирования, как оно работает, каким образом совместимо с DAG-графом задач Apache AirFlow и чем полезно дата-инженеру. Что такое Whylogs и зачем это Apache AirFlow Apache AirFlow активно используется...
Сегодня разберем, как автоматизировать наполнение озера данных на HDFS через загрузку таблиц из реляционной базы MySQL в Hive с помощью Apache NiFi. Какие процессоры NiFi следует использовать и зачем предварительно разделять таблицу Apache Hive. Пример ETL-конвейера на процессорах Apache NiFi Apache NiFi часто используется дата-инженерами в качестве средства автоматизации и...
Чтобы добавить в наши курсы для администраторов кластера Apache Kafka и разработчиков распределенных приложений еще больше полезных обучающих материалов, сегодня рассмотрим новый инструмент мониторинга системных метрик этой платформы потоковой передачи событий. Что такое проект Iris и чем он отличается от других популярных средств мониторинга состояния Apache Kafka, о которых мы...
Рассмотрим, как дата-инженеры Airbnb делятся своим опытом перевода корпоративного Data Lake на Apache HDFS в облачное объектное хранилище AWS S3. Почему пришлось переводить аналитические нагрузки с Apache Hive на Iceberg и Spark, и какие результаты это принесло. Предыстория: Data Lake на HDFS и Apache Hive Будучи крупнейшей онлайн-площадкой для размещения...
Специально для обучения ML-разработчиков сегодня разберем проблемы развертывания моделей Machine Learning в производстве и способы их решения с помощью MLOps-инструментов. А также поговорим про дрейф данных и его обнаружение методами математической статистики. Жизненный цикл ML-моделей и MLOps Каждый проект машинного обучения начинается с данных, подготовка которых занимает большую часть жизненного...
8 августа 2022 года вышел очередной релиз главной технологии стека Big Data – Apache Hadoop 3.3.4. Разбираемся с ключевыми фичами этого выпуска и исправлениями ошибок, которые особенно важны для администратора кластера и дата-инженера. ТОП-10 обновлений Apache Hadoop 3.3.4 Apache Hadoop 3.3.4 включает в себя ряд значительных улучшений по сравнению с...
Чтобы добавить в наши курсы для ИТ-архитекторов и дата-инженеров еще больше полезных материалов, сегодня рассмотрим, как модернизировать аналитические рабочие нагрузки в транзакционных системах с помощью гибридной архитектуры Data Mesh. А также поговорим о том, как реализовать этот подход с организационной и технической точек зрения. Аналитика и транзакции: versus или вместе?...
Сегодня разберем тему, важную для обучения дата-инженеров и разработчиков распределенных Spark-приложений. Почему чтение данных из реляционных баз в Apache Spark может быть медленным и как его ускорить, изменив SQL-запрос или структуру таблицы. JDBC-источники данных для Apache Spark Apache Spark является средством обработки, а не хранения больших данных. Поэтому, чтобы использовать...
Мы уже писали про поиск сложных событий при их потоковой обработке средствами Apache Flink. Продолжая эту важную для обучения дата-инженеров тему, сегодня рассмотрим, как CDC-коннектор от GetIndata упрощает запуск распознавание шаблонов на потоках данных из многих источников. Проблемы захвата измененных данных из реляционной базы с помощью JDBC-драйвера и способы их...
В этой статье для обучения дата-инженеров рассмотрим, как крупнейший медиа-банк Storyblocks добился обновления данных в корпоративном хранилище без простоев с помощью DevOps-идеи сине-зеленого развертывания и механизма TaskGroup в Apache Airflow. Проблемы ETL при массовой загрузке данных в Data Lake и DWH Storyblocks – это крупнейший в мире банк данных, включающий...
Недавно мы рассказывали, как организовать аутентификацию пользователей Apache NiFi через Okta OIDC в качестве сервиса провайдера удостоверений. Продолжая эту важную для обучения администраторов кластера и дата-инженеров тему, сегодня рассмотрим, как использовать SaaS-решение IBM Security Verify для управления доступом к пользовательскому интерфейсу Apache NiFi. Разбираемся с OpenID Connect для входа и...




















