Новинки Apache Flink 1.15: краткий обзор

Весна богата на новые релизы: в начале мая 2022 года вышел Apache Flink 1.15. Рассказываем, что нового в свежем выпуске: краткий обзор самых полезных фич для разработчика распределенных приложений, а также интересные изменения, исправления ошибок и улучшения для дата-инженера. Scala под капотом и спецификация REST API по стандарту OpenAPI Apache...

Apache Airflow 2.3: что нового?

30 апреля 2022 года вышел новый релиз Apache Airflow, который содержит более 700 коммитов с предыдущей версии 2.2.0 и включает 50 новых функций, 99 улучшений, 85 исправлений ошибок и несколько изменений в документации. Разбираемся, что особенно важно для дата-инженера в Apache Airflow 2.3.0. ТОП-7 главных фич Apache AirFlow 2.3.0: краткий...

Как быстро и безопасно удалять брокеры из кластера Kafka: решение от Confluent

Сегодня рассмотрим важную для обучения администраторов кластера Apache Kafka тему про удаление брокеров. Что происходит, когда администратор удаляет брокер Kafka из кластера, какие сложности при этом могут возникнуть и как с ними справляется решение на базе платформы Confluent. Как вручную удалить брокер Kafka из кластера: краткий guide администратора На первый...

ТОП-5 проблем с данными в ML-системах и MLOps для их устранения

Что не так с датасетами в системах машинного обучения, с какими трудностями сталкиваются аналитики, инженеры данных и специалисты по Data Science при внедрении MLOps, почему важна согласованность различных информационных хранилищ, зачем и как внедрять оперативный мониторинг за качеством данных. Разбираем трудности разработки и поддержки Machine Learning в production. 5 проблем...

Оконные функции PySpark в Google Colab: пара примеров

Специально для обучения начинающих аналитиков данных и дата-инженеров сегодня рассмотрим примеры выполнения простых SQL-запросов и оконных функций в Apache Spark на Google Colab. Как быстро проанализировать датафрейм из CSV-файлов с помощью нескольких строк на PySpark. Запуск и использование PySpark в Google Colab Предположим, необходимо определить потенциальный доход от проведения обучающих...

Зачем вам Data Importer для Neo4j: краткий обзор апрельских обновлений

Сегодня в рамках продвижения нашего курса по графовой аналитике больших данных в бизнес-приложениях, рассмотрим новый инструмент популярной графовой СУБД Neo4j  для загрузки данных - Data Importer. Что это такое, как работает, чем полезно специалисту по Data Science и зачем обновлять его до последней версии. Что такое Neo4j Data Importer Графовая...

Анализ данных Youtube в реальном времени с Apache NiFi, Kafka и Spark Streaming

В этой статье для дата-инженеров рассмотрим пример конвейера анализа потокового видео с Youtube-каналов на Kafka, Spark Streaming и Elasticsearch c Kibana, связанных через процессоры Apache NiFi. Постановка задачи: ETL-конвейер анализа потоковых данных с Youtube Потоковые данные непрерывно генерируются тысячами источников, которые отправляют записи одновременно и в небольших размерах (порядка килобайт)....

Управление перемешиванием данных во время выполнения Flink-приложений

Мы уже писали про динамическое изменение правил фильтрации без перезапуска Flink-приложений. В продолжение этой темы в рамках продвижения нашего нового курса по потоковой обработке данных  помощью Apache Flink, сегодня рассмотрим, как избежать неравномерного распределения данных во время выполнения программы. Больше 3-х не собираться: бизнес-правила и динамика разделения данных Перекос или...

5 способов организации ETL-процессов с Greenplum: команды и утилиты

Мы уже рассматривали, как загрузить в Greenplum большие объемы данных. В продолжение этой важной для обучения дата-инженеров темы, сегодня разберем еще несколько инструментов, решающих задачу организации ETL-процессов с этой MPP-СУБД. ETL-инструменты PostgreSQL Хотя Greenplum может хранить и обрабатывать огромные наборы данных на уровне петабайт, эта СУБД не генерирует их самостоятельно,...

Apache Kafka в Walmart для масштабируемого пополнения запасов в реальном времени

Проблема своевременного пополнения товарных запасов актуальна для любого ритейлера. Разбираемся, как торговый гигант США Walmart построил свою платформу планирования и пополнения продукции в реальном времени на базе Apache Kafka: ключевые требования к системе, архитектура и принципы работы, настройка конфигураций продюсеров и потребителей. Постановка задачи: пополнение товарного запаса в реальном времени...

Поиск по сайту