Зачем вам UNION вместо JOIN в Apache Druid и семплирование больших данных в Spark Streaming: пример потоковой аналитики Big Data

Недавно мы рассказывали про систему онлайн-аналитики Big Data на базе Apache Kafka, Spark Streaming и Druid для площадки рекламных ссылок Outbrain, а затем на этом же кейсе рассматривали, зачем нужен Graceful shutdown в потоковой обработке больших данных. Сегодня в рамках этого примера разберем, как снизить нагрузку при потоковой передаче множества...

3 метода векторизации слов в PySpark

Продолжаем говорить о NLP в PySpark. После того как тексты обработаны: удалены стоп-слова и проведена лемматизация — их следует векторизовать для последующей передачи алгоритмам Machine Learning. Сегодня мы расскажем о 3-x методах векторизации текстов в PySpark. Читайте в этой статье: применение CountVectorizer для подсчета встречаемости слов, уточнение важности слов с...

Почему вам нужно обучение разработке в Apache Kafka: 4 причины выбрать курсы от Школы Больших Данных

Сегодня мы расскажем про наши новые курсы по Apache Kafka для разработчиков Big Data. Читайте далее, зачем мы объединили тренинг по Kafka Streams и обучение интеграции этой платформы потоковой обработки событий с другими системами. Также вы узнаете, насколько новый комплексный курс по Apache Kafka полезен программистам распределенных приложений и выгоден...

Чем отличаются Apache AirFlow и Luigi: выбираем оркестратор для Big Data Pipeline’ов

Продвигая наши курсы по Apache AirFlow для инженеров Big Data, сегодня расскажем, чем этот фреймворк отличается от Luigi – другого достаточно известного инструмента оркестровки ETL-процессов и конвейеров обработки больших данных. В этой статье мы собрали для вас сходства и отличия Apache AirFlow и Luigi, а также их достоинства и недостатки,...

Не только AirFlow: Apache Luigi и еще 3 ETL-оркестратора для Big Data Pipeline’ов

Чтобы максимально приблизить обучение Airflow к практической работе дата-инженера, сегодня мы рассмотрим, какие еще есть альтернативы для оркестрации ETL-процессов и конвейеров обработки больших данных. Читайте далее, что такое Luigi, Argo, MLFlow и KubeFlow, где и как они используются, а также почему Apache Airflow все равно остается лучшим инструментом для оркестрации...

Что такое Graceful shutdown в Spark Streaming: основы Big Data для начинающих

Продолжая разбирать, как работает аналитика больших данных на практических примерах, сегодня мы рассмотрим, что такое Graceful shutdown в Apache Spark Streaming. Читайте далее, как устроен этот механизм «плавного» завершения Спарк-заданий и чем он полезен при потоковой обработке больших данных в рамках непрерывных конвейеров на базе Apache Kafka и других технологий...

Веб-реклама, ретаргетинг и проблемы потоковой аналитики больших данных с Apache Kafka, Spark Streaming и Druid: кейс платформы Outbrain

Современная аналитика больших данных ориентируется на обработку Big Data в реальном времени. Такие вычисления «на лету» позволяют в режиме онлайн узнавать о критически важных производственных показателях и оперативно понимать клиентские потребности. Это существенно ускоряет и автоматизирует цикл принятия управленческих решений в соответствии с требованиями сегодняшнего бизнеса. Обычно для реализации архитектуры...

Предобработка текстов на русском в PySpark

В одной из прошлых статей мы говорили о методах NLP (natural language processing) в PySpark. Сегодня мы покажем, как обработать реальный датасет, который содержит тексты на русском языке. Читайте у нас: удаление знаков пунктуации, символов и стоп-слов, токенизация и лемматизация на примере новостей на русском языке. Датасет с текстами на...

5 этапов продуктивной миграции в облачный Hadoop на базе Google Dataproc

Сегодня поговорим про особенности перехода с локального Hadoop-кластера в облачное SaaS-решение от Google – платформу Dataproc. Читайте далее, какие 5 шагов нужно сделать, чтобы быстро развернуть и эффективно использовать облачную инфраструктуру для запуска заданий Apache Hadoop и Spark в системах хранения и обработки больших данных (Big Data). Шаги переноса Data...

Как работает облачная аналитика больших данных на Apache Hadoop и Spark в Dataproc

В этой статье рассмотрим архитектуру и принципы работы системы хранения, аналитической обработки и визуализации больших данных на базе компонентов Hadoop, таких как Apache Spark, Hive, Tez, Ranger и Knox, развернутых в облачном Google-сервисе Dataproc. Читайте далее, как подключить к этим Big Data фреймворкам BI-инструменты Tableau и Looker, а также что обеспечивает...

Поиск по сайту