Зачем управлять трансферным обучением больших языковых моделей и что входит в это управление: знакомимся с расширением MLOps для LLM под названием LLMOps. Что такое LLMOps Большие языковые модели, воплощенные в генеративных нейросетях (ChatGPT и прочие аналоги), стали главной технологией уходящего года, которая уже активно используется на практике как частными лицами,...
Что не так с большими языковыми моделями, как RAG-приложения расширяют возможности LLM и зачем в графовой СУБД Neo4j добавлена поддержка векторного индекса. Зачем нужны RAG-приложения: ограничения базовых LLM-сетей С появлением ChatGPT и других генеративных нейросетей, большие языковые модели (LLM, Large Language Models) стали активно применяться для решения множества бизнес-задач, связанных...
Как получать результаты обработки данных с помощью Apache Spark, адресуя ИИ бизнес-запросы на английском языке: знакомимся с English SDK от Databricks. Настоящий Low Code с PySpark-AI. English SDK for Apache Spark и PySpark-AI: как это работает Большие языковые модели (LLM, Large Language Model), основанные на генеративных нейросетях, применимы не только...
Как устроены векторные базы данных и почему они стали так популярны с распространением ИИ. Архитектура, алгоритмы, принципы работы и примеры векторных СУБД. Что такое векторная СУБД и при чем здесь ИИ Как и следует из названия, векторная база хранит данные в виде векторов. Это понятие из математики означает специализированное представление...
Чтобы сделать наши курсы для специалистов по Data Science и ML-инженеров еще более полезными, сегодня познакомимся с очень мощным инструментом MLOps – open-source платформой ClearML. Что это такое, как работает, насколько упрощает разработку продуктов Machine Learning, а также зачем бизнесу ClearGPT. Что такое ClearML и как это поможет MLOps-инженеру Концепция...
Недавно мы разбирали, как дата-инженеру написать собственный оператор Apache AirFlow и использовать его в DAG. Сегодня посмотрим, каким образом с этой задачей справляется модный ИИ под названием ChatGPT. GPT-генерация пользовательского оператора AirFlow Хотя Apache AirFow предоставляет множество операторов для выполнения самых разных задач, иногда дата-инженеру приходится писать свои собственные Python-классы,...
Рассмотрим пока еще фантастический пример из ближайшего будущего, где вся информация структурирована в виде графа знаний, доступ к сегментам которого определяется принадлежностью человека или машины к конкретной партии или корпорации. Как построить справочник организаций с помощью ИИ и графовой аналитики больших данных. Постановка задачи: построение справочника организаций Систематизация и упорядочивание...
В этой статье мы рассмотрим комплексный конвейер (pipeline) обработки больших данных с помощью алгоритмов машинного обучения (Machine Learning) для системы речевого анализа Callinter от китайской компании Fano Labs. Apache Kafka играет ключевую роль в этом аналитическом конвейере, ежедневно обеспечивая бесперебойную стабильность и высокую производительность интеллектуальной обработки нескольких тысяч часов звонков....
Мы уже писали о преимуществах DaaS-похода, когда облачные провайдеры предоставляют данные как услугу, включая сложную предиктивную аналитику с использованием алгоритмов машинного обучения. Это позволяет быстро и удобно воспользоваться технологиями Big Data без существенных инвестиций в ИТ-инфраструктуру и дорогих специалистов, таких как Data Scientist, инженер и аналитик больших данных. Однако все...
Аналитика больших данных (Big Data) сегодня нужна всем компаниям, но далеко не каждое предприятия готово инвестировать в сложную ИТ-инфраструктуру и дорогих специалистов. Избежать этих затрат, получив все преимущества практического использования технологий Data Science, поможет парадигма «данные как сервис». В продолжение темы по цифровизации, сегодня поговорим про концепцию Data as a...