Потоковая аналитика больших данных на Flink SQL и Redpanda вместо Apache Spark с Kafka

В продолжение недавней статьи для дата-инженеров про альтернативные платформы потоковой передачи событий вместо Apache Kafka, сегодня рассмотрим пример аналитики больших данных средствами Flink SQL, записи результатов в Elasticsearch и их визуализации в Kibana. Читайте далее, чем Redpanda отличается от Kafka, а Flink – от Apache Spark с точки зрения потоковой...

Как повысить прозрачность Apache Spark: 3 способа мониторинга качества данных

В рамках обучения разработчиков Spark-приложений, аналитиков данных и дата-инженеров, сегодня рассмотрим, как улучшить и визуализировать понимание обработки данных в этом Big Data фреймворке. Читайте далее про API встроенных механизмов наблюдения за качеством данных в Apache Spark и открытые библиотеки профилирования на примере Deequ. 2 уровня абстракции мониторинга Spark-приложений для дата-инженера...

Сеансовые окна в Apache Spark Structured Streaming: кейсы, примеры и ограничения

Анализ данных в рамках пользовательский сеансов (сессий) – довольно востребованный кейс в Apache Spark, который не так просто реализовать из-за особенностей потоковой и пакетной обработки, а также эксплуатационных расходов. Сегодня рассмотрим, как работают сеансовые окна Spark Structured Streaming и каковы ограничения этого фреймворка. Что такое сеансовые окна: краткий ликбез по...

Платформа аналитики больших данных Леруа Мерлен: потоковый CDC с Apache Kafka, NiFi, AirFlow и Flink в DWH на Greenplum

Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...

От локальных заданий Apache Spark SQL к Google BigQuery: опыт PayPal

В этой статье для дата-инженеров рассмотрим кейс компании PayPal, которая переводит свои аналитические рабочие нагрузки из локального кластера Apache Spark в Google Cloud Processing. Читайте далее, чем это решение оказалось лучше выполнения Spark-заданий в кластере DataProc с использованием данных BigQuery и облачного хранилища Google (GCS, Google Cloud Storage) для потоковой...

Apache Flink для пакетной и потоковой обработки Big Data в больших компаниях: примеры Pinterest и Alibaba Group

Сегодня рассмотрим пару кейсов по использованию Apache Flink в качестве основного фреймворка пакетной и потоковой аналитики больших данных. Читайте далее, как фото-хостинг Pinterest построил вокруг Flink собственную инфраструктуру работы с изображениями в реальном времени, а китайский ритейл-гигант Alibaba Group успешно обрабатывал 7 ТБ в секунду во время глобального дня шопинга....

Графовая аналитика больших данных с Apache Spark: GraphX и GraphFrames

Продвигая наш новый курс по графовым алгоритмам на больших данных, сегодня рассмотрим, почему концепция графов сегодня так востребована в Big Data и Machine Learning. Вас ждет краткий ликбез по модулю GraphX в Apache Spark и его отличия от API GraphFrames, а также особенности кластерной обработки и сохранения данных графа свойств....

Перспективы Apache Hive: развитие или забвение?

Появившись более 10 лет назад, Apache Hive до сих пор является самым популярным инструментом стека SQL-on-Hadoop и активно используется для аналитики больших данных. Однако, технологии Big Data постоянно развиваются: Spark все чаще заменяет Hadoop MapReduce, а вместо HDFS все чаще используются объектные облачные хранилища: AWS S3, Delta Lake, Apache Ozone...

Еще пара лучших практик конфигурирования Greenplum: настраиваем параметры операционной системы хоста

Продвигая наши курсы по Greenplum и Arenadata DB, сегодня рассмотрим пару полезных лайфхаков, как избежать избыточного потребления памяти, настроив конфигурационные параметры операционной системы хоста. Читайте далее, почему не стоит задавать слишком большой размер страниц виртуальной памяти, зачем администратору контролировать количество spill-файлов и как в этом помогает утилита gp_toolkit. Операционная система...

Правила оптимизации в Spark SQL и их улучшения в Radiant

В этой статье для разработчиков Spark-приложений и дата-аналитиков рассмотрим новый оптимизатор этого фреймворка, Radiant. Он основан на SQL-оптимизаторе Catalyst и представляет собой open-source проект от энтузиастов сообщества Apache Spark. Читайте далее, чем хорош Spark-Radiant и как использовать его для оптимизации SQL-запросов при аналитике больших данных. Что такое SQL-оптимизатор Spark-Radiant и...