JVM Garbage Collection и не только: 7 причин OOM-ошибки в Apache Spark

Обучая разработчиков Big Data, сегодня рассмотрим, почему в распределенных приложениях Apache Spark случаются OOM-ошибки. Читайте далее, как работает сборка мусора JVM в Spark-приложениях, почему из-за нее случаются утечки памяти и что можно сделать на уровне драйвера и исполнителя для предупреждения OutOfMemoryError. Сборка мусора JVM и OOM-ошибки в Spark-приложениях На практике...

Кастомизация Apache Airflow: мониторинг исполнения Big Data pipeline’ов со своими KPI

Добавляя в наши курсы по Apache AirFlow еще больше полезных практик, сегодня разберем опыт дата-инженеров американской компании Groupon по настройке этого фреймворка. Читайте далее, как добавить собственные KPI исполнения конвейеров обработки данных в эту workflow-платформу, делая его веб-GUI более наглядным и удобным для управления DAG’ами. Типовые возможности веб-GUI Apache Airflow...

Как устроен JDBC-коннектор источника Kafka Confluent и при чем здесь реестр схем

Недавно мы рассматривали пример потоковой передачи данных между реляционными СУБД с помощью готовых JDBC-коннекторов через cURL-вызовы к REST API Kafka Connect. Сегодня заглянем под капот такой интеграции и разберем подробнее, что именно представляет собой JDBC-коннектор источника Kafka от Confluent. Компоненты Kafka Confluent для потоковой интеграции данных: коннекторы и реестр схем...

Как читать планы SQL-запросов в Greenplum: советы аналитику и дата-инженеру

Обучая дата-аналитиков и инженеров данных тонкостям MPP-СУБД Greenplum, сегодня разберем, какой оператор помогает просмотреть план выполнения SQL-запроса, почему добавлять ANALYZE к EXPLAIN нужно с осторожностью и где найти универсальное решение анализа и визуализации PostgreSQL-совместимых продуктов. Я все объясню: команда EXPLAIN в PostgreSQL Разобравшись с оператором анализа и сбора статистики по...

Что посмотреть в Apache Spark UI: 5 полезных кейсов для разработчика Big Data

В этой статье по обучению Apache Spark рассмотрим, чем графический веб-интерфейс этого фреймворка полезен разработчику распределенных приложений. Читайте далее, где посмотреть кэшированные данные, визуализацию DAG, переменные среды, исполняемые SQL-запросы, а также прочие важные метрики кластерных вычислений и аналитики больших данных. 9 страниц Apache Spark UI Apache Spark предоставляет набор пользовательских...

Анализируй и оптимизируй: статистика таблиц и планы выполнения SQL-запросов в Greenplum

Чтобы сделать наши курсы по Greenplum и аналитике больших данных еще более полезными, сегодня рассмотрим особенности выполнения SQL-запросов в этой MPP-СУБД. Читайте далее, зачем и когда запускать оператор анализа табличной статистики ANALYZE, как он связан с планом выполнения SQL-запроса и какие инструменты помогут дата-инженеру, аналитику или разработчику повысить их производительность....

Что не так с UDF-функциями в Apache Spark SQL и как это исправить

Продвигая наши курсы по Apache Spark для разработчиков, сегодня рассмотрим пользовательские функции и особенности работы с ними в API SQL-модуле этого фреймворка. Читайте далее про идемпотентность UDF-функций и их влияние на распределение данных в кластере Apache Spark. Как устроены UDF в Apache Spark: краткий ликбез Пользовательские функции (User Defined Functions,...

Особенности оконных функций и кэширования датафреймов в Apache Spark SQL

В рамках обучения разработчиков Apache Spark, сегодня рассмотрим еще несколько интересных особенностей этого фреймворка, ограничивающих его типовые возможности и на PySpark-примерах разберем, как с этим бороться. Читайте далее, что такое оконные функции и зачем они нужны, как сортировка влияет на фрейм окна в Spark SQL и чем опасны действия над...

Еще 3 причуды API DataFrame в Apache Spark, о которых вы не знали

Чтобы сделать наши курсы по Apache Spark еще более полезными, мы рассказываем о неочевидных тонкостях этого фреймворка, знание которых позволит разработчику распределенных приложений использовать возможности этой технологии более эффективно. Сегодня на практических примерах PySpark в API DataFrame рассмотрим разницу между функциями сортировки массивов и особенности объединения контенкации, а также разберемся...

Преобразования vs действия: под капотом операций Apache Spark

Продолжая разговор про вычислительные операции над датафреймами в Apache Spark, сегодня рассмотрим, какие преобразования (transformations) и действия (actions) чаще всего используются при разработке распределенных приложений и аналитике больших данных. Читайте далее, про виды столбцовых преобразования и отличия действия collect() от take(). Преобразования в Apache Spark: виды и особенности реализации Напомним,...

Поиск по сайту