DataOps и инженерия больших данных: 10 лучших практик от корпорации DNB

Чтобы добавить в наши курсы для дата-инженеров еще больше реальных примеров и лучших DataOps-практик, сегодня мы расскажем, как специалисты крупной норвежской компании DNB обеспечивают надежный доступ к чистым и точным массивам Big Data, применяя передовые методы проектирования данных и реализации конвейеров их обработки. В этой статье мы собрали для вас...

Борьба за качество больших данных в Airbnb: 3 направления для Big Data Quality

Аналитика больших данных напрямую связана с их качеством, которое необходимо отслеживать на каждом этапе непрерывного конвейера их обработки (Pipeline). Сегодня рассмотрим методы и средства обеспечения Data Quality на примере корпорации Airbnb. Читайте далее про лучшие практики повышения качества больших данных от компании-разработчика самого популярного DataOps-инструмента в мире Big Data, Apache...

Комбо Apache Spark и Greenplum для быстрой аналитики больших данных: разбор интеграционного коннектора

Продолжая разговор про обучение Apache Spark для инженеров данных на практических примерах, сегодня разберем, как организовать интеграцию этого Big Data фреймворка с MPP-СУБД Greenplum. В этой статье мы расскажем о коннекторе Greenplum-Spark, который позволяет эффективно связывать эти средства работы с большими данными, выстраивая аналитический конвейер их обработки (data pipeline). Типовые...

Как создать свой коннектор Apache Spark: пример интеграции с Tableau

Говоря про практическое обучение Apache Spark для дата-инженеров, сегодня рассмотрим особенности разработки собственного коннектора для этого фреймворка на примере его интеграции с BI-системой Tableau. Читайте далее, как конвертировать Spark RDD в нужный формат и сделать свой коннектор удобным для пользователей. Интеграция Spark с внешними источниками данных через коннекторы Apache Spark...

Помнить все: как устранить утечки памяти в приложениях Apache Spark – 7 советов от Disney

Сегодня рассмотрим Apache Spark с важной для разработчиков распределенных приложений точки зрения, разобрав как в рамках этого Big Data фреймворка справиться с утечками данных при их потоковой передаче. Читайте далее, почему возникает OutOfMemory Exception в Spark-приложениях и как дата-инженеры компании Disney решили эту проблему с нехваткой памяти для JVM. Зачем...

Как очистить большие данные для Apache Spark SQL: краткий обзор Cleanframes

Поскольку курсы по Apache Spark нужны не только разработчикам распределенных приложений, но и аналитикам больших данных с дата-инженерами, сегодня мы рассмотрим, какие средства этого фреймворка позволяют выполнять очистку данных и повышать их качество. Читайте далее, что такое Cleanframes в Spark SQL, чем полезна эта библиотека и каковы ее ограничения. Apache...

Зачем вам UNION вместо JOIN в Apache Druid и семплирование больших данных в Spark Streaming: пример потоковой аналитики Big Data

Недавно мы рассказывали про систему онлайн-аналитики Big Data на базе Apache Kafka, Spark Streaming и Druid для площадки рекламных ссылок Outbrain, а затем на этом же кейсе рассматривали, зачем нужен Graceful shutdown в потоковой обработке больших данных. Сегодня в рамках этого примера разберем, как снизить нагрузку при потоковой передаче множества...

Что такое Graceful shutdown в Spark Streaming: основы Big Data для начинающих

Продолжая разбирать, как работает аналитика больших данных на практических примерах, сегодня мы рассмотрим, что такое Graceful shutdown в Apache Spark Streaming. Читайте далее, как устроен этот механизм «плавного» завершения Спарк-заданий и чем он полезен при потоковой обработке больших данных в рамках непрерывных конвейеров на базе Apache Kafka и других технологий...

Веб-реклама, ретаргетинг и проблемы потоковой аналитики больших данных с Apache Kafka, Spark Streaming и Druid: кейс платформы Outbrain

Современная аналитика больших данных ориентируется на обработку Big Data в реальном времени. Такие вычисления «на лету» позволяют в режиме онлайн узнавать о критически важных производственных показателях и оперативно понимать клиентские потребности. Это существенно ускоряет и автоматизирует цикл принятия управленческих решений в соответствии с требованиями сегодняшнего бизнеса. Обычно для реализации архитектуры...

Предобработка текстов на русском в PySpark

В одной из прошлых статей мы говорили о методах NLP (natural language processing) в PySpark. Сегодня мы покажем, как обработать реальный датасет, который содержит тексты на русском языке. Читайте у нас: удаление знаков пунктуации, символов и стоп-слов, токенизация и лемматизация на примере новостей на русском языке. Датасет с текстами на...

Поиск по сайту